利用朗道理论研究LPSMO纳米晶体的临界行为和磁热特性

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Mohamed Hsini, Amel Haouas, Fatma Aouaini
{"title":"利用朗道理论研究LPSMO纳米晶体的临界行为和磁热特性","authors":"Mohamed Hsini, Amel Haouas, Fatma Aouaini","doi":"10.1002/adts.202500092","DOIUrl":null,"url":null,"abstract":"This study presents a computational methodology that combines the Landau theory with the Arrott–Noakes equation. Through an innovative formulation, simulations are performed to investigate the magnetic entropy change, <span data-altimg=\"/cms/asset/cd662fb7-56ab-4e54-b7eb-1ec8f99ace99/adts202500092-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"6\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0001\" display=\"inline\" location=\"graphic/adts202500092-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"6\" data-semantic-content=\"0\" data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Δ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><msub data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">M</mi></msub></mrow></mrow>$ - {{\\Delta}}{{\\mathrm{S}}_{\\mathrm{M}}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, in a disordered ferromagnetic system. The theoretical framework is applied to analyze the critical behavior using experimental isothermal magnetization data <span data-altimg=\"/cms/asset/c63123c4-5b79-47bd-8127-08441328d41a/adts202500092-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0002\" display=\"inline\" location=\"graphic/adts202500092-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">M</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$M( {H, T} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of (La<sub>1–x</sub>Pr<sub>x</sub>)<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) nanocrystalline perovskites. Initially, the critical exponents (<span data-altimg=\"/cms/asset/cfa3f077-5270-4502-8d48-7052012b33d9/adts202500092-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0003.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"gamma\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0003\" display=\"inline\" location=\"graphic/adts202500092-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"gamma\" data-semantic-type=\"identifier\">γ</mi>$\\gamma $</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\"/cms/asset/d48e1f66-5295-44cc-a0cb-c056b5baed33/adts202500092-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0004.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"beta\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0004\" display=\"inline\" location=\"graphic/adts202500092-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"beta\" data-semantic-type=\"identifier\">β</mi>$\\beta $</annotation></semantics></math></mjx-assistive-mml></mjx-container>) of these materials are determined. It is observed that the magnetic properties of the studied compounds near the phase transition deviate from the mean-field model. These critical exponents are then used to simulate isothermal <span data-altimg=\"/cms/asset/ee67138f-c4a4-47fc-ae92-f9a50102d323/adts202500092-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0005.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0005\" display=\"inline\" location=\"graphic/adts202500092-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">M</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$M( {H, T} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\"/cms/asset/c4b0d07a-90dd-4302-80c5-7ae9b72ad658/adts202500092-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0006.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"15\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"16\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,13\" data-semantic-content=\"14\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,11\" data-semantic-content=\"12,2\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"4\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"5,10\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"6,7,8\" data-semantic-content=\"7\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0006\" display=\"inline\" location=\"graphic/adts202500092-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"15\" data-semantic-content=\"0\" data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"16\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,13\" data-semantic-content=\"14\" data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Δ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,11\" data-semantic-content=\"12,2\" data-semantic-parent=\"15\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><msub data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"4\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\" mathvariant=\"normal\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">M</mi></msub><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"5,10\" data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"6,7,8\" data-semantic-content=\"7\" data-semantic-parent=\"11\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">T</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow></mrow></mrow>$ - {\\bf{\\Delta }}{{\\mathrm{S}}_{\\mathrm{M}}}( {{\\mathrm{H}},{\\mathrm{T}}} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> curves.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Behavior and Magnetocaloric Properties of LPSMO Nanocrystals via Landau Theory\",\"authors\":\"Mohamed Hsini, Amel Haouas, Fatma Aouaini\",\"doi\":\"10.1002/adts.202500092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a computational methodology that combines the Landau theory with the Arrott–Noakes equation. Through an innovative formulation, simulations are performed to investigate the magnetic entropy change, <span data-altimg=\\\"/cms/asset/cd662fb7-56ab-4e54-b7eb-1ec8f99ace99/adts202500092-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"6\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202500092-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"6\\\" data-semantic-content=\\\"0\\\" data-semantic- data-semantic-role=\\\"negative\\\" data-semantic-speech=\\\"minus normal upper Delta normal upper S Subscript normal upper M\\\" data-semantic-type=\\\"prefixop\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,4\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/adts202500092-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"6\\\" data-semantic-content=\\\"0\\\" data-semantic-role=\\\"negative\\\" data-semantic-speech=\\\"minus normal upper Delta normal upper S Subscript normal upper M\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,4\\\" data-semantic-content=\\\"5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Δ</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">S</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">M</mi></msub></mrow></mrow>$ - {{\\\\Delta}}{{\\\\mathrm{S}}_{\\\\mathrm{M}}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, in a disordered ferromagnetic system. The theoretical framework is applied to analyze the critical behavior using experimental isothermal magnetization data <span data-altimg=\\\"/cms/asset/c63123c4-5b79-47bd-8127-08441328d41a/adts202500092-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"7\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202500092-math-0002.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8,0\\\" data-semantic- data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper M left parenthesis upper H comma upper T right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"5\\\" data-semantic-content=\\\"1,6\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"2,3,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/adts202500092-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8,0\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper M left parenthesis upper H comma upper T right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">M</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\">⁡</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"1,6\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3,4\\\" data-semantic-content=\\\"3\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">H</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">T</mi></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$M( {H, T} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of (La<sub>1–x</sub>Pr<sub>x</sub>)<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) nanocrystalline perovskites. Initially, the critical exponents (<span data-altimg=\\\"/cms/asset/cfa3f077-5270-4502-8d48-7052012b33d9/adts202500092-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"8\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202500092-math-0003.png\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"gamma\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/adts202500092-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"gamma\\\" data-semantic-type=\\\"identifier\\\">γ</mi>$\\\\gamma $</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\\\"/cms/asset/d48e1f66-5295-44cc-a0cb-c056b5baed33/adts202500092-math-0004.png\\\"></span><mjx-container ctxtmenu_counter=\\\"9\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202500092-math-0004.png\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"beta\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/adts202500092-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"beta\\\" data-semantic-type=\\\"identifier\\\">β</mi>$\\\\beta $</annotation></semantics></math></mjx-assistive-mml></mjx-container>) of these materials are determined. It is observed that the magnetic properties of the studied compounds near the phase transition deviate from the mean-field model. These critical exponents are then used to simulate isothermal <span data-altimg=\\\"/cms/asset/ee67138f-c4a4-47fc-ae92-f9a50102d323/adts202500092-math-0005.png\\\"></span><mjx-container ctxtmenu_counter=\\\"10\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202500092-math-0005.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8,0\\\" data-semantic- data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper M left parenthesis upper H comma upper T right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"5\\\" data-semantic-content=\\\"1,6\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"2,3,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/adts202500092-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8,0\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper M left parenthesis upper H comma upper T right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">M</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\">⁡</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"1,6\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3,4\\\" data-semantic-content=\\\"3\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">H</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">T</mi></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$M( {H, T} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\\\"/cms/asset/c4b0d07a-90dd-4302-80c5-7ae9b72ad658/adts202500092-math-0006.png\\\"></span><mjx-container ctxtmenu_counter=\\\"11\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/adts202500092-math-0006.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"15\\\" data-semantic-content=\\\"0\\\" data-semantic- data-semantic-role=\\\"negative\\\" data-semantic-speech=\\\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\\\" data-semantic-type=\\\"prefixop\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,13\\\" data-semantic-content=\\\"14\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"4,11\\\" data-semantic-content=\\\"12,2\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-msub data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"9\\\" data-semantic-content=\\\"5,10\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"6,7,8\\\" data-semantic-content=\\\"7\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/adts202500092-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"15\\\" data-semantic-content=\\\"0\\\" data-semantic-role=\\\"negative\\\" data-semantic-speech=\\\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,13\\\" data-semantic-content=\\\"14\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Δ</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4,11\\\" data-semantic-content=\\\"12,2\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">S</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">M</mi></msub><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\">⁡</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"9\\\" data-semantic-content=\\\"5,10\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"6,7,8\\\" data-semantic-content=\\\"7\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">H</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">T</mi></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow></mrow></mrow>$ - {\\\\bf{\\\\Delta }}{{\\\\mathrm{S}}_{\\\\mathrm{M}}}( {{\\\\mathrm{H}},{\\\\mathrm{T}}} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> curves.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500092\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500092","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合朗道理论和阿罗特-诺克斯方程的计算方法。通过一种创新的公式,模拟研究了无序铁磁系统中的磁熵变化,−Δ²SM $ - {{\Delta}}{{\mathrm{S}}_{\mathrm{M}}}$。利用(La1-xPrx)0.7Sr0.3MnO3 (x = 0,0.2, 0.4, 0.6, 0.8,和1)纳米晶钙钛矿的实验等温磁化数据M (H,T) $M( {H, T} )$,应用理论框架分析了临界行为。首先确定了这些材料的临界指数(γ $\gamma $和β $\beta $)。观察到,在相变附近,所研究的化合物的磁性能偏离平均场模型。然后使用这些临界指数来模拟等温M²(H,T) $M( {H, T} )$和- Δ²SM²(H,T) $ - {\bf{\Delta }}{{\mathrm{S}}_{\mathrm{M}}}( {{\mathrm{H}},{\mathrm{T}}} )$曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Critical Behavior and Magnetocaloric Properties of LPSMO Nanocrystals via Landau Theory

Critical Behavior and Magnetocaloric Properties of LPSMO Nanocrystals via Landau Theory
This study presents a computational methodology that combines the Landau theory with the Arrott–Noakes equation. Through an innovative formulation, simulations are performed to investigate the magnetic entropy change, ΔSM$ - {{\Delta}}{{\mathrm{S}}_{\mathrm{M}}}$, in a disordered ferromagnetic system. The theoretical framework is applied to analyze the critical behavior using experimental isothermal magnetization data M(H,T)$M( {H, T} )$ of (La1–xPrx)0.7Sr0.3MnO3 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) nanocrystalline perovskites. Initially, the critical exponents (γ$\gamma $ and β$\beta $) of these materials are determined. It is observed that the magnetic properties of the studied compounds near the phase transition deviate from the mean-field model. These critical exponents are then used to simulate isothermal M(H,T)$M( {H, T} )$ and ΔSM(H,T)$ - {\bf{\Delta }}{{\mathrm{S}}_{\mathrm{M}}}( {{\mathrm{H}},{\mathrm{T}}} )$ curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信