通过调整可持续性光伏发电的pnicogen组成来调整chalhalides的光电性能

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Dengwei Hu, Pradeep K. W. Abeygunawardhana, Galhenage Asha
{"title":"通过调整可持续性光伏发电的pnicogen组成来调整chalhalides的光电性能","authors":"Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Dengwei Hu, Pradeep K. W. Abeygunawardhana, Galhenage Asha","doi":"10.1002/adts.202500104","DOIUrl":null,"url":null,"abstract":"This study investigates Sb<sub>1-x</sub>Bi<sub>x</sub>SeI pnictogen chalcohalides as lead-free materials for photovoltaic and optoelectronic applications using density functional theory (DFT) calculations. Increasing Bi content from 0.5 to 0.6 reduces the bandgap from 1.60 to 1.43 eV, enhancing the light absorption and aligning with the optimal range for solar energy conversions. Structural analysis reveals that higher Bi substitution expands the lattice, reduces the hole effective mass, and improves the hole mobility, while the electron mobility decreases slightly. Sb<sub>0.4</sub>Bi<sub>0.6</sub>SeI demonstrates quasi-direct bandgap characteristics attributed to Bi-induced lattice distortion and strong spin–orbit coupling (SOC), which reduces the conduction band minimum and facilitate direct-like electronic transitions. Enhanced absorption near the band edge and localized states contribute to higher sub-bandgap absorption, broadening the spectral response. Reduced bandgap falls within the optimal range for single-junction solar cells, increasing photocurrent generation. While defect-induced recombination poses challenges, passivation and compositional tuning can optimize its performance. This study identifies the potential of Sb<sub>0.4</sub>Bi<sub>0.6</sub>SeI as a versatile absorber material in emerging solar cell architectures. The findings provide a pathway toward designing cost-effective and sustainable materials with tailored properties for next-generation photovoltaic and optoelectronic technologies.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning of Optoelectronic Properties of Chalcohalides by Tailoring Pnictogen Composition for Sustainable Photovoltaics\",\"authors\":\"Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Dengwei Hu, Pradeep K. W. Abeygunawardhana, Galhenage Asha\",\"doi\":\"10.1002/adts.202500104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates Sb<sub>1-x</sub>Bi<sub>x</sub>SeI pnictogen chalcohalides as lead-free materials for photovoltaic and optoelectronic applications using density functional theory (DFT) calculations. Increasing Bi content from 0.5 to 0.6 reduces the bandgap from 1.60 to 1.43 eV, enhancing the light absorption and aligning with the optimal range for solar energy conversions. Structural analysis reveals that higher Bi substitution expands the lattice, reduces the hole effective mass, and improves the hole mobility, while the electron mobility decreases slightly. Sb<sub>0.4</sub>Bi<sub>0.6</sub>SeI demonstrates quasi-direct bandgap characteristics attributed to Bi-induced lattice distortion and strong spin–orbit coupling (SOC), which reduces the conduction band minimum and facilitate direct-like electronic transitions. Enhanced absorption near the band edge and localized states contribute to higher sub-bandgap absorption, broadening the spectral response. Reduced bandgap falls within the optimal range for single-junction solar cells, increasing photocurrent generation. While defect-induced recombination poses challenges, passivation and compositional tuning can optimize its performance. This study identifies the potential of Sb<sub>0.4</sub>Bi<sub>0.6</sub>SeI as a versatile absorber material in emerging solar cell architectures. The findings provide a pathway toward designing cost-effective and sustainable materials with tailored properties for next-generation photovoltaic and optoelectronic technologies.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500104\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用密度泛函理论(DFT)计算研究了Sb1-xBixSeI烟原硫化物作为光伏和光电子应用的无铅材料。将Bi含量从0.5增加到0.6,使带隙从1.60 eV减少到1.43 eV,增强了光吸收,符合太阳能转换的最佳范围。结构分析表明,较高的铋取代使晶格膨胀,空穴有效质量降低,空穴迁移率提高,而电子迁移率略有下降。Sb0.4Bi0.6SeI表现出准直接带隙特性,这是由于bi诱导的晶格畸变和强自旋轨道耦合(SOC),这降低了导带最小值,促进了类似直接的电子跃迁。带边附近的吸收增强和局域态有助于更高的亚带隙吸收,拓宽了光谱响应。减小的带隙落在单结太阳能电池的最佳范围内,增加了光电流的产生。虽然缺陷引起的复合带来了挑战,但钝化和成分调优可以优化其性能。本研究确定了Sb0.4Bi0.6SeI作为新兴太阳能电池结构中多功能吸收材料的潜力。这一发现为设计具有成本效益和可持续性的材料提供了一条途径,这些材料具有适合下一代光伏和光电子技术的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning of Optoelectronic Properties of Chalcohalides by Tailoring Pnictogen Composition for Sustainable Photovoltaics

Tuning of Optoelectronic Properties of Chalcohalides by Tailoring Pnictogen Composition for Sustainable Photovoltaics
This study investigates Sb1-xBixSeI pnictogen chalcohalides as lead-free materials for photovoltaic and optoelectronic applications using density functional theory (DFT) calculations. Increasing Bi content from 0.5 to 0.6 reduces the bandgap from 1.60 to 1.43 eV, enhancing the light absorption and aligning with the optimal range for solar energy conversions. Structural analysis reveals that higher Bi substitution expands the lattice, reduces the hole effective mass, and improves the hole mobility, while the electron mobility decreases slightly. Sb0.4Bi0.6SeI demonstrates quasi-direct bandgap characteristics attributed to Bi-induced lattice distortion and strong spin–orbit coupling (SOC), which reduces the conduction band minimum and facilitate direct-like electronic transitions. Enhanced absorption near the band edge and localized states contribute to higher sub-bandgap absorption, broadening the spectral response. Reduced bandgap falls within the optimal range for single-junction solar cells, increasing photocurrent generation. While defect-induced recombination poses challenges, passivation and compositional tuning can optimize its performance. This study identifies the potential of Sb0.4Bi0.6SeI as a versatile absorber material in emerging solar cell architectures. The findings provide a pathway toward designing cost-effective and sustainable materials with tailored properties for next-generation photovoltaic and optoelectronic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信