透过拓扑全息透镜的费米子量子临界性

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Sheng-Jie Huang
{"title":"透过拓扑全息透镜的费米子量子临界性","authors":"Sheng-Jie Huang","doi":"10.1103/physrevb.111.155130","DOIUrl":null,"url":null,"abstract":"We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for (1+1)d</a:mi></a:math> fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT, and we establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msubsup><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup><b:mo>,</b:mo><b:mo> </b:mo><b:mrow><b:msub><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mn>2</b:mn></b:msub><b:mo>×</b:mo><b:msubsup><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup></b:mrow><b:mo>,</b:mo><b:mo> </b:mo><b:msubsup><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mrow><b:mn>4</b:mn></b:mrow><b:mi>F</b:mi></b:msubsup></b:math>, and the fermionic version of the noninvertible <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:mtext>Rep</g:mtext><g:mo>(</g:mo><g:msub><g:mi>S</g:mi><g:mn>3</g:mn></g:msub><g:mo>)</g:mo></g:mrow></g:math> symmetry. Our work uncovers many exotic fermionic gapped phases, quantum critical points, and gapless phases. These include gapped phases with fermionic noninvertible <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mtext>Rep</h:mtext><h:mo>(</h:mo><h:msub><h:mi>S</h:mi><h:mn>3</h:mn></h:msub><h:mo>)</h:mo></h:mrow></h:math> symmetry, two kinds of fermionic symmetry-enriched quantum critical points, a fermionic gapless symmetry-protected topological phase, and a fermionic gapless spontaneous symmetry-breaking phase that breaks the fermionic noninvertible symmetry. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermionic quantum criticality through the lens of topological holography\",\"authors\":\"Sheng-Jie Huang\",\"doi\":\"10.1103/physrevb.111.155130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for (1+1)d</a:mi></a:math> fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT, and we establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with <b:math xmlns:b=\\\"http://www.w3.org/1998/Math/MathML\\\"><b:msubsup><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup><b:mo>,</b:mo><b:mo> </b:mo><b:mrow><b:msub><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mn>2</b:mn></b:msub><b:mo>×</b:mo><b:msubsup><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup></b:mrow><b:mo>,</b:mo><b:mo> </b:mo><b:msubsup><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mrow><b:mn>4</b:mn></b:mrow><b:mi>F</b:mi></b:msubsup></b:math>, and the fermionic version of the noninvertible <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\"><g:mrow><g:mtext>Rep</g:mtext><g:mo>(</g:mo><g:msub><g:mi>S</g:mi><g:mn>3</g:mn></g:msub><g:mo>)</g:mo></g:mrow></g:math> symmetry. Our work uncovers many exotic fermionic gapped phases, quantum critical points, and gapless phases. These include gapped phases with fermionic noninvertible <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\"><h:mrow><h:mtext>Rep</h:mtext><h:mo>(</h:mo><h:msub><h:mi>S</h:mi><h:mn>3</h:mn></h:msub><h:mo>)</h:mo></h:mrow></h:math> symmetry, two kinds of fermionic symmetry-enriched quantum critical points, a fermionic gapless symmetry-protected topological phase, and a fermionic gapless spontaneous symmetry-breaking phase that breaks the fermionic noninvertible symmetry. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.155130\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.155130","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们利用拓扑全息框架来表征和深入了解费米子量子系统中量子临界点和无间隙相的本质。拓扑全息是一种描述广义全局对称性和局部量子系统在一个更高维度上的对称电荷的一般框架,称为对称拓扑场论(SymTFT)。在这项工作中,我们考虑了物质(1+1)d费米子量子相的拓扑全息图的推广。讨论了自旋结构如何在SymTFT中编码,并建立了量子场论中的形式费米化公式与SymTFT的费米子间隙边界条件的选择之间的联系。我们通过详细分析各种例子,包括具有Z2F, Z2×Z2F, Z4F和费米子版本的不可逆Rep(S3)对称的费米子系统,证明了费米子间隙相和相变的识别和表征。我们的工作揭示了许多奇异的费米子间隙相、量子临界点和无间隙相。这些包括具有费米子不可逆Rep(S3)对称性的间隙相,两种富费米子对称性的量子临界点,一个保护费米子无间隙对称性的拓扑相,以及一个破坏费米子不可逆对称性的费米子无间隙自发对称性破缺相。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fermionic quantum criticality through the lens of topological holography
We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for (1+1)d fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT, and we establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with Z2F, Z2×Z2F, Z4F, and the fermionic version of the noninvertible Rep(S3) symmetry. Our work uncovers many exotic fermionic gapped phases, quantum critical points, and gapless phases. These include gapped phases with fermionic noninvertible Rep(S3) symmetry, two kinds of fermionic symmetry-enriched quantum critical points, a fermionic gapless symmetry-protected topological phase, and a fermionic gapless spontaneous symmetry-breaking phase that breaks the fermionic noninvertible symmetry. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信