{"title":"透过拓扑全息透镜的费米子量子临界性","authors":"Sheng-Jie Huang","doi":"10.1103/physrevb.111.155130","DOIUrl":null,"url":null,"abstract":"We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for (1+1)d</a:mi></a:math> fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT, and we establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msubsup><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup><b:mo>,</b:mo><b:mo> </b:mo><b:mrow><b:msub><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mn>2</b:mn></b:msub><b:mo>×</b:mo><b:msubsup><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup></b:mrow><b:mo>,</b:mo><b:mo> </b:mo><b:msubsup><b:mi mathvariant=\"double-struck\">Z</b:mi><b:mrow><b:mn>4</b:mn></b:mrow><b:mi>F</b:mi></b:msubsup></b:math>, and the fermionic version of the noninvertible <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:mtext>Rep</g:mtext><g:mo>(</g:mo><g:msub><g:mi>S</g:mi><g:mn>3</g:mn></g:msub><g:mo>)</g:mo></g:mrow></g:math> symmetry. Our work uncovers many exotic fermionic gapped phases, quantum critical points, and gapless phases. These include gapped phases with fermionic noninvertible <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mtext>Rep</h:mtext><h:mo>(</h:mo><h:msub><h:mi>S</h:mi><h:mn>3</h:mn></h:msub><h:mo>)</h:mo></h:mrow></h:math> symmetry, two kinds of fermionic symmetry-enriched quantum critical points, a fermionic gapless symmetry-protected topological phase, and a fermionic gapless spontaneous symmetry-breaking phase that breaks the fermionic noninvertible symmetry. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermionic quantum criticality through the lens of topological holography\",\"authors\":\"Sheng-Jie Huang\",\"doi\":\"10.1103/physrevb.111.155130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for (1+1)d</a:mi></a:math> fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT, and we establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with <b:math xmlns:b=\\\"http://www.w3.org/1998/Math/MathML\\\"><b:msubsup><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup><b:mo>,</b:mo><b:mo> </b:mo><b:mrow><b:msub><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mn>2</b:mn></b:msub><b:mo>×</b:mo><b:msubsup><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mn>2</b:mn><b:mi>F</b:mi></b:msubsup></b:mrow><b:mo>,</b:mo><b:mo> </b:mo><b:msubsup><b:mi mathvariant=\\\"double-struck\\\">Z</b:mi><b:mrow><b:mn>4</b:mn></b:mrow><b:mi>F</b:mi></b:msubsup></b:math>, and the fermionic version of the noninvertible <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\"><g:mrow><g:mtext>Rep</g:mtext><g:mo>(</g:mo><g:msub><g:mi>S</g:mi><g:mn>3</g:mn></g:msub><g:mo>)</g:mo></g:mrow></g:math> symmetry. Our work uncovers many exotic fermionic gapped phases, quantum critical points, and gapless phases. These include gapped phases with fermionic noninvertible <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\"><h:mrow><h:mtext>Rep</h:mtext><h:mo>(</h:mo><h:msub><h:mi>S</h:mi><h:mn>3</h:mn></h:msub><h:mo>)</h:mo></h:mrow></h:math> symmetry, two kinds of fermionic symmetry-enriched quantum critical points, a fermionic gapless symmetry-protected topological phase, and a fermionic gapless spontaneous symmetry-breaking phase that breaks the fermionic noninvertible symmetry. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.155130\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.155130","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Fermionic quantum criticality through the lens of topological holography
We utilize the topological holographic framework to characterize and gain insights into the nature of quantum critical points and gapless phases in fermionic quantum systems. Topological holography is a general framework that describes the generalized global symmetry and the symmetry charges of a local quantum system in terms of a slab of a topological order, termed as the symmetry topological field theory (SymTFT), in one higher dimension. In this work, we consider a generalization of the topological holographic picture for (1+1)d fermionic quantum phases of matter. We discuss how spin structures are encoded in the SymTFT, and we establish the connection between the formal fermionization formula in quantum field theory and the choice of fermionic gapped boundary conditions of the SymTFT. We demonstrate the identification and the characterization of the fermionic gapped phases and phase transitions through detailed analysis of various examples, including the fermionic systems with Z2F,Z2×Z2F,Z4F, and the fermionic version of the noninvertible Rep(S3) symmetry. Our work uncovers many exotic fermionic gapped phases, quantum critical points, and gapless phases. These include gapped phases with fermionic noninvertible Rep(S3) symmetry, two kinds of fermionic symmetry-enriched quantum critical points, a fermionic gapless symmetry-protected topological phase, and a fermionic gapless spontaneous symmetry-breaking phase that breaks the fermionic noninvertible symmetry. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter