新探测到的质子化双氰乙炔(nc4nh + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$)在星际低温下与He的碰撞动力学

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pooja Chahal, T. J. Dhilip Kumar
{"title":"新探测到的质子化双氰乙炔(nc4nh + $$ {\\mathrm{NC}}_4{\\mathrm{NH}}^{+} $$)在星际低温下与He的碰撞动力学","authors":"Pooja Chahal,&nbsp;T. J. Dhilip Kumar","doi":"10.1002/jcc.70103","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cyanopolyyne and protonated-dicyanopolyyne molecules always get special attention for their detection in the interstellar medium. The rotational quantum dynamics for the collision of recently detected protonated dicyanoacetylene (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NC</mtext>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mtext>NH</mtext>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{NC}}_4{\\mathrm{NH}}^{+} $$</annotation>\n </semantics></math>) with He is studied to get the inelastic rate coefficients till temperature range of 100 K. An accurate potential energy surface (PES), computed using ab initio methods, has been developed for the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NC</mtext>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mtext>NH</mtext>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{NC}}_4{\\mathrm{NH}}^{+} $$</annotation>\n </semantics></math>–He collision system. The PES was developed with the coupled cluster, that is, the CCSD(T)-F12b method in combination with the aug-cc-pVTZ basis set. The 2D PES has a global minimum with a value of −239.19 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>cm</mtext>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{cm}}^{-1} $$</annotation>\n </semantics></math>. The analytical fitting of this 2D PES is done to obtain the radial coefficients, that give cross-sections for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NC</mtext>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mtext>NH</mtext>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{NC}}_4{\\mathrm{NH}}^{+} $$</annotation>\n </semantics></math> molecule till collisional energy range of 300 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>cm</mtext>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{cm}}^{-1} $$</annotation>\n </semantics></math>. The rate coefficients are achieved for the first 20 rotational transitions. An important trend is observed when comparing the de-excitation rate coefficients at different temperatures. For transitions below <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>j</mi>\n <mo>=</mo>\n <mn>10</mn>\n </mrow>\n <annotation>$$ \\Delta j=10 $$</annotation>\n </semantics></math>, a preference for odd <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>j</mi>\n </mrow>\n <annotation>$$ \\Delta j $$</annotation>\n </semantics></math> values is evident, which can be attributed to the anisotropy in the PES of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NC</mtext>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mtext>NH</mtext>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{NC}}_4{\\mathrm{NH}}^{+} $$</annotation>\n </semantics></math>–He collision. This similar behavior is observed for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>HC</mtext>\n <mn>3</mn>\n </msub>\n <msup>\n <mtext>NH</mtext>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{HC}}_3{\\mathrm{NH}}^{+} $$</annotation>\n </semantics></math>–He collision. However, for higher transitions, a strong propensity for even <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>j</mi>\n </mrow>\n <annotation>$$ \\Delta j $$</annotation>\n </semantics></math> transitions emerges. The results obtained in the present work will enable us to estimate the abundance of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NC</mtext>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mtext>NH</mtext>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{NC}}_4{\\mathrm{NH}}^{+} $$</annotation>\n </semantics></math> in the ISM under non-local thermal equilibrium conditions.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collisional Dynamics of Newly Detected Protonated Dicyanoacetylene (\\n \\n \\n \\n \\n NC\\n \\n \\n 4\\n \\n \\n \\n \\n NH\\n \\n \\n +\\n \\n \\n \\n $$ {\\\\mathrm{NC}}_4{\\\\mathrm{NH}}^{+} $$\\n ) With He at Low Interstellar Temperatures\",\"authors\":\"Pooja Chahal,&nbsp;T. J. Dhilip Kumar\",\"doi\":\"10.1002/jcc.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cyanopolyyne and protonated-dicyanopolyyne molecules always get special attention for their detection in the interstellar medium. The rotational quantum dynamics for the collision of recently detected protonated dicyanoacetylene (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NC</mtext>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mtext>NH</mtext>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NC}}_4{\\\\mathrm{NH}}^{+} $$</annotation>\\n </semantics></math>) with He is studied to get the inelastic rate coefficients till temperature range of 100 K. An accurate potential energy surface (PES), computed using ab initio methods, has been developed for the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NC</mtext>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mtext>NH</mtext>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NC}}_4{\\\\mathrm{NH}}^{+} $$</annotation>\\n </semantics></math>–He collision system. The PES was developed with the coupled cluster, that is, the CCSD(T)-F12b method in combination with the aug-cc-pVTZ basis set. The 2D PES has a global minimum with a value of −239.19 <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mtext>cm</mtext>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{cm}}^{-1} $$</annotation>\\n </semantics></math>. The analytical fitting of this 2D PES is done to obtain the radial coefficients, that give cross-sections for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NC</mtext>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mtext>NH</mtext>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NC}}_4{\\\\mathrm{NH}}^{+} $$</annotation>\\n </semantics></math> molecule till collisional energy range of 300 <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mtext>cm</mtext>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{cm}}^{-1} $$</annotation>\\n </semantics></math>. The rate coefficients are achieved for the first 20 rotational transitions. An important trend is observed when comparing the de-excitation rate coefficients at different temperatures. For transitions below <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>10</mn>\\n </mrow>\\n <annotation>$$ \\\\Delta j=10 $$</annotation>\\n </semantics></math>, a preference for odd <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>j</mi>\\n </mrow>\\n <annotation>$$ \\\\Delta j $$</annotation>\\n </semantics></math> values is evident, which can be attributed to the anisotropy in the PES of the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NC</mtext>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mtext>NH</mtext>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NC}}_4{\\\\mathrm{NH}}^{+} $$</annotation>\\n </semantics></math>–He collision. This similar behavior is observed for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>HC</mtext>\\n <mn>3</mn>\\n </msub>\\n <msup>\\n <mtext>NH</mtext>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{HC}}_3{\\\\mathrm{NH}}^{+} $$</annotation>\\n </semantics></math>–He collision. However, for higher transitions, a strong propensity for even <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mi>j</mi>\\n </mrow>\\n <annotation>$$ \\\\Delta j $$</annotation>\\n </semantics></math> transitions emerges. The results obtained in the present work will enable us to estimate the abundance of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NC</mtext>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mtext>NH</mtext>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NC}}_4{\\\\mathrm{NH}}^{+} $$</annotation>\\n </semantics></math> in the ISM under non-local thermal equilibrium conditions.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70103\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70103","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氰聚炔和质子化二氰聚炔分子在星际介质中的探测一直受到人们的特别关注。最近探测到的质子化二氰乙炔(cn4nh +)碰撞的旋转量子动力学$$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$)与He进行了研究,得到了100 K温度范围内的非弹性速率系数。一个精确的势能面(PES),用从头算法计算,已开发用于nc4nh + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ -He碰撞系统。PES采用耦合聚类,即CCSD(T)-F12b方法结合aug-cc-pVTZ基集进行开发。2D PES的全局最小值为−239.19 cm−1 $$ {\mathrm{cm}}^{-1} $$。对该二维PES进行解析拟合,得到径向系数;给出了n4nh + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$分子在碰撞能范围内的横截面300 cm−1 $$ {\mathrm{cm}}^{-1} $$。获得了前20个旋转跃迁的速率系数。在比较不同温度下的退激率系数时,发现了一个重要的趋势。对于Δ j = 10 $$ \Delta j=10 $$以下的转换,对于奇数Δ j $$ \Delta j $$值的偏好是明显的,这可以归因于n4nh + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ -He碰撞。在h3cnh + $$ {\mathrm{HC}}_3{\mathrm{NH}}^{+} $$ -He碰撞中也观察到类似的行为。然而,对于更高的转换,甚至出现了Δ j $$ \Delta j $$转换的强烈倾向。本工作的结果将使我们能够估计cn4nh +的丰度$$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$在非局部热平衡条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Collisional Dynamics of Newly Detected Protonated Dicyanoacetylene (
         
            
               
                  
                     NC
                  
                  
                     4
                  
               
               
                  
                     NH
                  
                  
                     +
                  
               
            
            $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$
         ) With He at Low Interstellar Temperatures

Collisional Dynamics of Newly Detected Protonated Dicyanoacetylene ( NC 4 NH + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ ) With He at Low Interstellar Temperatures

Cyanopolyyne and protonated-dicyanopolyyne molecules always get special attention for their detection in the interstellar medium. The rotational quantum dynamics for the collision of recently detected protonated dicyanoacetylene ( NC 4 NH + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ ) with He is studied to get the inelastic rate coefficients till temperature range of 100 K. An accurate potential energy surface (PES), computed using ab initio methods, has been developed for the NC 4 NH + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ –He collision system. The PES was developed with the coupled cluster, that is, the CCSD(T)-F12b method in combination with the aug-cc-pVTZ basis set. The 2D PES has a global minimum with a value of −239.19 cm 1 $$ {\mathrm{cm}}^{-1} $$ . The analytical fitting of this 2D PES is done to obtain the radial coefficients, that give cross-sections for NC 4 NH + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ molecule till collisional energy range of 300 cm 1 $$ {\mathrm{cm}}^{-1} $$ . The rate coefficients are achieved for the first 20 rotational transitions. An important trend is observed when comparing the de-excitation rate coefficients at different temperatures. For transitions below Δ j = 10 $$ \Delta j=10 $$ , a preference for odd Δ j $$ \Delta j $$ values is evident, which can be attributed to the anisotropy in the PES of the NC 4 NH + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ –He collision. This similar behavior is observed for HC 3 NH + $$ {\mathrm{HC}}_3{\mathrm{NH}}^{+} $$ –He collision. However, for higher transitions, a strong propensity for even Δ j $$ \Delta j $$ transitions emerges. The results obtained in the present work will enable us to estimate the abundance of NC 4 NH + $$ {\mathrm{NC}}_4{\mathrm{NH}}^{+} $$ in the ISM under non-local thermal equilibrium conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信