{"title":"QM/MM模拟中构象采样和QM区域大小的影响:基于模型系统的自适应QM/MM研究","authors":"Holden Paz, Silvan Beck, Richmond Lee, Junming Ho, Haibo Yu","doi":"10.1002/jcc.70109","DOIUrl":null,"url":null,"abstract":"<p>Molecular properties in combined quantum mechanics and molecular mechanics (QM/MM) simulations have been shown to be dependent on the size of the quantum mechanical (QM) region and the amount of conformational sampling. Previous studies have largely focused on enzymatic systems, which have made it difficult to distinguish the effects of QM region size and conformational sampling from other factors including QM-MM boundary artifacts and the boundary effects. This study uses the difference-based adaptive solvation QM/MM method to investigate the tautomerization reactions of alanine and aspartate in explicit solvent. The choice of computationally tractable systems enables the decoupling of QM region size effects from other factors and a direct comparison of free energy surfaces with potential energy surfaces (PESs). The results show that (1) it is crucial to properly account for thermal fluctuations along the reaction pathways, and (2) free energy surfaces converge rapidly with increasing QM region size, whereas charge transfer requires a slightly larger QM region to achieve convergence. These findings are expected to guide future studies of enzymatic systems and other complex systems where QM/MM methods are applied.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70109","citationCount":"0","resultStr":"{\"title\":\"The Effects of Conformational Sampling and QM Region Size in QM/MM Simulations: An Adaptive QM/MM Study With Model Systems\",\"authors\":\"Holden Paz, Silvan Beck, Richmond Lee, Junming Ho, Haibo Yu\",\"doi\":\"10.1002/jcc.70109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular properties in combined quantum mechanics and molecular mechanics (QM/MM) simulations have been shown to be dependent on the size of the quantum mechanical (QM) region and the amount of conformational sampling. Previous studies have largely focused on enzymatic systems, which have made it difficult to distinguish the effects of QM region size and conformational sampling from other factors including QM-MM boundary artifacts and the boundary effects. This study uses the difference-based adaptive solvation QM/MM method to investigate the tautomerization reactions of alanine and aspartate in explicit solvent. The choice of computationally tractable systems enables the decoupling of QM region size effects from other factors and a direct comparison of free energy surfaces with potential energy surfaces (PESs). The results show that (1) it is crucial to properly account for thermal fluctuations along the reaction pathways, and (2) free energy surfaces converge rapidly with increasing QM region size, whereas charge transfer requires a slightly larger QM region to achieve convergence. These findings are expected to guide future studies of enzymatic systems and other complex systems where QM/MM methods are applied.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70109\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70109\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70109","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Effects of Conformational Sampling and QM Region Size in QM/MM Simulations: An Adaptive QM/MM Study With Model Systems
Molecular properties in combined quantum mechanics and molecular mechanics (QM/MM) simulations have been shown to be dependent on the size of the quantum mechanical (QM) region and the amount of conformational sampling. Previous studies have largely focused on enzymatic systems, which have made it difficult to distinguish the effects of QM region size and conformational sampling from other factors including QM-MM boundary artifacts and the boundary effects. This study uses the difference-based adaptive solvation QM/MM method to investigate the tautomerization reactions of alanine and aspartate in explicit solvent. The choice of computationally tractable systems enables the decoupling of QM region size effects from other factors and a direct comparison of free energy surfaces with potential energy surfaces (PESs). The results show that (1) it is crucial to properly account for thermal fluctuations along the reaction pathways, and (2) free energy surfaces converge rapidly with increasing QM region size, whereas charge transfer requires a slightly larger QM region to achieve convergence. These findings are expected to guide future studies of enzymatic systems and other complex systems where QM/MM methods are applied.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.