从不连续理论到扩展免疫的更新:共生群落概念

IF 4.5 3区 医学 Q2 IMMUNOLOGY
Federico Boem, Ingrid Lamminpää, Amedeo Amedei
{"title":"从不连续理论到扩展免疫的更新:共生群落概念","authors":"Federico Boem,&nbsp;Ingrid Lamminpää,&nbsp;Amedeo Amedei","doi":"10.1002/eji.202451528","DOIUrl":null,"url":null,"abstract":"<p>The immune system (IS) is commonly understood as a system composed of specific cells and tissues that have evolved to contrast pathogens and defend the host. By virtue of this capacity, it has come to be considered capable of making an essential distinction, that between self versus non-self, which would contribute to a clear identity of the organism. However, in the wake of evolution and ecology, growing evidence suggests that the so-called immune system, which also evolved from symbiotic interactions with external agents, is not just a defensive system that merely protects the organism but, on the contrary, is involved in many global regulatory and homeostatic functions. Moreover, in performing these many functions, IS is not only an ensemble of host cells and tissues but functionally is constitutively determined by the interaction with a set of associated microorganisms, that is, the human microbiome. In this scenario, it is open-and-shut that the microbiome itself is a functional part of this extended immune system. Organisms and microbiomes together, therefore, form a functional whole, which constitutes a privileged form of biological organization. In light of this evidence showing the inadequacy of traditional accounts, we propose to extend and supplement the current IS conceptualization by introducing the notion of the symmunobiome. With this term, we intend to characterize the microbiome's own and unavoidable component to overall immune functionality. Therefore, we suggest a new immune system determination, articulated in three linked pillars—adaptive immunity, innate immunity, and symmunobiome—to better grasp the diverse functionality of extended immunity.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451528","citationCount":"0","resultStr":"{\"title\":\"Updating the Discontinuity Theory to the Extended Immunity: The Symmunobiome Concept\",\"authors\":\"Federico Boem,&nbsp;Ingrid Lamminpää,&nbsp;Amedeo Amedei\",\"doi\":\"10.1002/eji.202451528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The immune system (IS) is commonly understood as a system composed of specific cells and tissues that have evolved to contrast pathogens and defend the host. By virtue of this capacity, it has come to be considered capable of making an essential distinction, that between self versus non-self, which would contribute to a clear identity of the organism. However, in the wake of evolution and ecology, growing evidence suggests that the so-called immune system, which also evolved from symbiotic interactions with external agents, is not just a defensive system that merely protects the organism but, on the contrary, is involved in many global regulatory and homeostatic functions. Moreover, in performing these many functions, IS is not only an ensemble of host cells and tissues but functionally is constitutively determined by the interaction with a set of associated microorganisms, that is, the human microbiome. In this scenario, it is open-and-shut that the microbiome itself is a functional part of this extended immune system. Organisms and microbiomes together, therefore, form a functional whole, which constitutes a privileged form of biological organization. In light of this evidence showing the inadequacy of traditional accounts, we propose to extend and supplement the current IS conceptualization by introducing the notion of the symmunobiome. With this term, we intend to characterize the microbiome's own and unavoidable component to overall immune functionality. Therefore, we suggest a new immune system determination, articulated in three linked pillars—adaptive immunity, innate immunity, and symmunobiome—to better grasp the diverse functionality of extended immunity.</p>\",\"PeriodicalId\":165,\"journal\":{\"name\":\"European Journal of Immunology\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451528\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451528\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451528","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫系统(IS)通常被理解为一个由特定细胞和组织组成的系统,这些细胞和组织已经进化到对抗病原体和保护宿主。由于这种能力,它被认为能够在自我与非自我之间做出本质的区分,这将有助于有机体的明确身份。然而,随着进化和生态学的发展,越来越多的证据表明,所谓的免疫系统,也从与外部因素的共生相互作用中进化而来,不仅仅是一个保护生物体的防御系统,相反,它还参与了许多全球调节和体内平衡功能。此外,在执行这些许多功能时,IS不仅是宿主细胞和组织的集合,而且在功能上是由与一组相关微生物(即人类微生物组)的相互作用构成的。在这种情况下,微生物群本身是这个扩展免疫系统的一个功能部分,这是开放和关闭的。因此,有机体和微生物组共同构成了一个功能整体,构成了生物组织的一种特殊形式。鉴于这一证据显示传统帐户的不足,我们建议通过引入共生组的概念来扩展和补充当前的IS概念化。用这个术语,我们打算描述微生物组自身和整体免疫功能不可避免的组成部分。因此,我们建议一种新的免疫系统测定方法,结合适应性免疫、先天免疫和免疫组学这三个相互关联的支柱来更好地掌握扩展免疫的多种功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Updating the Discontinuity Theory to the Extended Immunity: The Symmunobiome Concept

Updating the Discontinuity Theory to the Extended Immunity: The Symmunobiome Concept

The immune system (IS) is commonly understood as a system composed of specific cells and tissues that have evolved to contrast pathogens and defend the host. By virtue of this capacity, it has come to be considered capable of making an essential distinction, that between self versus non-self, which would contribute to a clear identity of the organism. However, in the wake of evolution and ecology, growing evidence suggests that the so-called immune system, which also evolved from symbiotic interactions with external agents, is not just a defensive system that merely protects the organism but, on the contrary, is involved in many global regulatory and homeostatic functions. Moreover, in performing these many functions, IS is not only an ensemble of host cells and tissues but functionally is constitutively determined by the interaction with a set of associated microorganisms, that is, the human microbiome. In this scenario, it is open-and-shut that the microbiome itself is a functional part of this extended immune system. Organisms and microbiomes together, therefore, form a functional whole, which constitutes a privileged form of biological organization. In light of this evidence showing the inadequacy of traditional accounts, we propose to extend and supplement the current IS conceptualization by introducing the notion of the symmunobiome. With this term, we intend to characterize the microbiome's own and unavoidable component to overall immune functionality. Therefore, we suggest a new immune system determination, articulated in three linked pillars—adaptive immunity, innate immunity, and symmunobiome—to better grasp the diverse functionality of extended immunity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.70%
发文量
224
审稿时长
2 months
期刊介绍: The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信