端部质量弹性约束下不同锥度结构健康监测方法

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Jong-Won Lee
{"title":"端部质量弹性约束下不同锥度结构健康监测方法","authors":"Jong-Won Lee","doi":"10.1007/s13296-025-00945-9","DOIUrl":null,"url":null,"abstract":"<div><p>Cantilever-type longitudinally tapered structures are frequently used in high-rise steel structures. The current paper presents a fault identification technique for differently tapered beams that are elastically restrained and having a tip mass. For this purpose, a method is proposed for identifying the modal parameters of an intact beam by applying continuity and boundary conditions. Then, an equivalent bending rigidity for a beam with a crack is introduced and a characteristic equation is established to estimate the natural frequency change caused by the damage. An experimental study is conducted to verify the presented method. A baseline model is updated for the intact beam before detecting the crack by updating the rotational and translational spring constants. Crack identification is then carried out experimentally based on the neural network technique. The training patterns for the network are composed of the natural frequencies calculated from the derived characteristic equation for cracked beams, along with their corresponding crack sizes and locations. The cracks are identified using the trained neural network, and those are found to be reasonably well identified. The practicality and usability of the presented technique for health monitoring of the differently tapered cantilever-type structures elastically restrained having a tip mass could be thus verified.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"25 2","pages":"364 - 375"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Health Monitoring Method of Differently Tapered Structure Elastically Restrained with a Tip Mass\",\"authors\":\"Jong-Won Lee\",\"doi\":\"10.1007/s13296-025-00945-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cantilever-type longitudinally tapered structures are frequently used in high-rise steel structures. The current paper presents a fault identification technique for differently tapered beams that are elastically restrained and having a tip mass. For this purpose, a method is proposed for identifying the modal parameters of an intact beam by applying continuity and boundary conditions. Then, an equivalent bending rigidity for a beam with a crack is introduced and a characteristic equation is established to estimate the natural frequency change caused by the damage. An experimental study is conducted to verify the presented method. A baseline model is updated for the intact beam before detecting the crack by updating the rotational and translational spring constants. Crack identification is then carried out experimentally based on the neural network technique. The training patterns for the network are composed of the natural frequencies calculated from the derived characteristic equation for cracked beams, along with their corresponding crack sizes and locations. The cracks are identified using the trained neural network, and those are found to be reasonably well identified. The practicality and usability of the presented technique for health monitoring of the differently tapered cantilever-type structures elastically restrained having a tip mass could be thus verified.</p></div>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":\"25 2\",\"pages\":\"364 - 375\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13296-025-00945-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-025-00945-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

悬臂式纵向锥形结构是高层钢结构中常用的结构形式。本文提出了一种针对具有弹性约束和尖端质量的不同锥度梁的故障识别技术。为此,提出了一种利用连续条件和边界条件识别完整梁模态参数的方法。然后,引入了含裂纹梁的等效抗弯刚度,建立了损伤引起的梁固有频率变化的特征方程。通过实验验证了该方法的有效性。在检测裂纹之前,通过更新旋转和平移弹簧常数来更新完整梁的基线模型。在此基础上进行了基于神经网络技术的裂纹识别实验。网络的训练模式由裂缝梁的固有频率以及相应的裂缝尺寸和位置组成。使用训练好的神经网络对裂缝进行识别,并且发现这些裂缝识别得相当好。从而验证了该技术对具有尖端质量的弹性约束的不同锥度悬臂式结构进行健康监测的实用性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Health Monitoring Method of Differently Tapered Structure Elastically Restrained with a Tip Mass

Cantilever-type longitudinally tapered structures are frequently used in high-rise steel structures. The current paper presents a fault identification technique for differently tapered beams that are elastically restrained and having a tip mass. For this purpose, a method is proposed for identifying the modal parameters of an intact beam by applying continuity and boundary conditions. Then, an equivalent bending rigidity for a beam with a crack is introduced and a characteristic equation is established to estimate the natural frequency change caused by the damage. An experimental study is conducted to verify the presented method. A baseline model is updated for the intact beam before detecting the crack by updating the rotational and translational spring constants. Crack identification is then carried out experimentally based on the neural network technique. The training patterns for the network are composed of the natural frequencies calculated from the derived characteristic equation for cracked beams, along with their corresponding crack sizes and locations. The cracks are identified using the trained neural network, and those are found to be reasonably well identified. The practicality and usability of the presented technique for health monitoring of the differently tapered cantilever-type structures elastically restrained having a tip mass could be thus verified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信