Mohsen Habelalmateen, Alaa M. Al-Habbobi, Nassr Salman
{"title":"轴、侧向联合循环荷载作用下钢柱局部几何缺陷的影响","authors":"Mohsen Habelalmateen, Alaa M. Al-Habbobi, Nassr Salman","doi":"10.1007/s13296-025-00940-0","DOIUrl":null,"url":null,"abstract":"<div><p>Steel sections are usually manufactured with geometric defects and deviates from the original ideal shape during rolling process; these defects are called imperfection in international standards. This study is devoted towards investigating local geometric imperfections of steel columns under combined effect of axial load and lateral cyclic displacements which simulates steel columns under seismic events. Ten wide flange sections with two cases for each section: ideal and imperfect. A comprehensive nonlinear finite element model which is validated against available experimental data in literature was employed. A sustained axial load which ranges from 20-100 percent of the maximum axial capacity for the column was applied prior to application of the designated lateral cyclic displacement amplitude. It was found that web local imperfection has a substantial impact on the cyclic response of the columns. It was also revealed that higher axial load ratios impact column response than do lower load ratios. Moreover, drift angle was found more susceptible in stocky than in light sections. The study showed that there is a limiting zone within the slenderness ratios for both of flanges and web should be avoided when considering section design of columns under seismic events because it yields a big difference between ideal and imperfect section.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"25 2","pages":"350 - 363"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Local Geometric Imperfections on Steel Columns Under Combined Axial and Lateral Cyclic Loading\",\"authors\":\"Mohsen Habelalmateen, Alaa M. Al-Habbobi, Nassr Salman\",\"doi\":\"10.1007/s13296-025-00940-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Steel sections are usually manufactured with geometric defects and deviates from the original ideal shape during rolling process; these defects are called imperfection in international standards. This study is devoted towards investigating local geometric imperfections of steel columns under combined effect of axial load and lateral cyclic displacements which simulates steel columns under seismic events. Ten wide flange sections with two cases for each section: ideal and imperfect. A comprehensive nonlinear finite element model which is validated against available experimental data in literature was employed. A sustained axial load which ranges from 20-100 percent of the maximum axial capacity for the column was applied prior to application of the designated lateral cyclic displacement amplitude. It was found that web local imperfection has a substantial impact on the cyclic response of the columns. It was also revealed that higher axial load ratios impact column response than do lower load ratios. Moreover, drift angle was found more susceptible in stocky than in light sections. The study showed that there is a limiting zone within the slenderness ratios for both of flanges and web should be avoided when considering section design of columns under seismic events because it yields a big difference between ideal and imperfect section.</p></div>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":\"25 2\",\"pages\":\"350 - 363\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13296-025-00940-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-025-00940-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Impact of Local Geometric Imperfections on Steel Columns Under Combined Axial and Lateral Cyclic Loading
Steel sections are usually manufactured with geometric defects and deviates from the original ideal shape during rolling process; these defects are called imperfection in international standards. This study is devoted towards investigating local geometric imperfections of steel columns under combined effect of axial load and lateral cyclic displacements which simulates steel columns under seismic events. Ten wide flange sections with two cases for each section: ideal and imperfect. A comprehensive nonlinear finite element model which is validated against available experimental data in literature was employed. A sustained axial load which ranges from 20-100 percent of the maximum axial capacity for the column was applied prior to application of the designated lateral cyclic displacement amplitude. It was found that web local imperfection has a substantial impact on the cyclic response of the columns. It was also revealed that higher axial load ratios impact column response than do lower load ratios. Moreover, drift angle was found more susceptible in stocky than in light sections. The study showed that there is a limiting zone within the slenderness ratios for both of flanges and web should be avoided when considering section design of columns under seismic events because it yields a big difference between ideal and imperfect section.
期刊介绍:
The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.