{"title":"术前血流动力学边界条件和材料模型的不确定性:脑梭状动脉瘤破裂1例","authors":"Yu.O. Kuyanova, A.K. Khe, K.S. Ovsyannikov, A.V. Dubovoi, A.P. Chupakhin, D.V. Parshin","doi":"10.1134/S0021894424060105","DOIUrl":null,"url":null,"abstract":"<p>The influence of various individual and phantom boundary conditions on the results pre-operative numerical simulations of hemodynamics of a fusiform aneurysm of cerebral vessels is numerically simulated. It is found that allowance for individual mechanical properties of the aneurysm tissue affects the results of predicting the aneurysm status, but does not affect predicting the rupture zone, which can be detected by using the CFD approach under the assumption of rigid walls with phantom boundary conditions and with the condition of the maximum shear stresses on the wall as a criterion of rupture zone determination.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 6","pages":"1119 - 1139"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNCERTAINTY OF BOUNDARY CONDITIONS AND MATERIAL MODEL FOR PRE-OPERATIVE HEMODYNAMICS: CLINICAL CASE OF A RUPTURED CEREBRAL FUSIFORM ANEURYSM\",\"authors\":\"Yu.O. Kuyanova, A.K. Khe, K.S. Ovsyannikov, A.V. Dubovoi, A.P. Chupakhin, D.V. Parshin\",\"doi\":\"10.1134/S0021894424060105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influence of various individual and phantom boundary conditions on the results pre-operative numerical simulations of hemodynamics of a fusiform aneurysm of cerebral vessels is numerically simulated. It is found that allowance for individual mechanical properties of the aneurysm tissue affects the results of predicting the aneurysm status, but does not affect predicting the rupture zone, which can be detected by using the CFD approach under the assumption of rigid walls with phantom boundary conditions and with the condition of the maximum shear stresses on the wall as a criterion of rupture zone determination.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"65 6\",\"pages\":\"1119 - 1139\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894424060105\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424060105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
UNCERTAINTY OF BOUNDARY CONDITIONS AND MATERIAL MODEL FOR PRE-OPERATIVE HEMODYNAMICS: CLINICAL CASE OF A RUPTURED CEREBRAL FUSIFORM ANEURYSM
The influence of various individual and phantom boundary conditions on the results pre-operative numerical simulations of hemodynamics of a fusiform aneurysm of cerebral vessels is numerically simulated. It is found that allowance for individual mechanical properties of the aneurysm tissue affects the results of predicting the aneurysm status, but does not affect predicting the rupture zone, which can be detected by using the CFD approach under the assumption of rigid walls with phantom boundary conditions and with the condition of the maximum shear stresses on the wall as a criterion of rupture zone determination.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.