虚二次域\(\mathbb {Z}_{p}\)上的精细modell - weil群

IF 0.5 Q3 MATHEMATICS
Meng Fai Lim
{"title":"虚二次域\\(\\mathbb {Z}_{p}\\)上的精细modell - weil群","authors":"Meng Fai Lim","doi":"10.1007/s40316-024-00230-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>E</i> be an elliptic curve over <span>\\(\\mathbb {Q}\\)</span>. Greenberg has posed a question whether the structure of the fine Selmer group over the cyclotomic <span>\\(\\mathbb {Z}_{p}\\)</span>-extension of <span>\\(\\mathbb {Q}\\)</span> can be described by cyclotomic polynomials in a certain precise manner. A recent work of Lei has made progress on this problem by proving that the fine Mordell–Weil group (in the sense of Wuthrich) does have this required property. The goal of this paper is to study analogous questions of Greenberg over various <span>\\(\\mathbb {Z}_{p}\\)</span>-extensions of an imaginary quadratic field <i>F</i>. In particular, when the elliptic curve has complex multiplication by the ring of integers of the imaginary quadratic field, we obtain results that are analogous to those of Lei over the cyclotomic <span>\\(\\mathbb {Z}_{p}\\)</span>-extension and anti-cyclotomic <span>\\(\\mathbb {Z}_{p}\\)</span>-extension of <i>F</i>. In the event that the elliptic curve has good ordinary reduction at the prime <i>p</i>, we further obtain a result over the <span>\\(\\mathbb {Z}_{p}\\)</span>-extension of <i>F</i> unramified outside precisely one of the prime of <i>F</i> above <i>p</i>. Finally, we study the situation of an elliptic curve over the anticyclotomic <span>\\(\\mathbb {Z}_{p}\\)</span>-extension under the generalized Heegner hypothesis. Along the way, we establish an analogous result for the BDP-Selmer group. This latter result is then applied to obtain a relation between the BDP <i>p</i>-adic <i>L</i>-function and the Mordell–Weil rank growth in the anticyclotomic <span>\\(\\mathbb {Z}_{p}\\)</span>-extension which may be of independent interest.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"49 1","pages":"253 - 278"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On fine Mordell–Weil groups over \\\\(\\\\mathbb {Z}_{p}\\\\)-extensions of an imaginary quadratic field\",\"authors\":\"Meng Fai Lim\",\"doi\":\"10.1007/s40316-024-00230-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>E</i> be an elliptic curve over <span>\\\\(\\\\mathbb {Q}\\\\)</span>. Greenberg has posed a question whether the structure of the fine Selmer group over the cyclotomic <span>\\\\(\\\\mathbb {Z}_{p}\\\\)</span>-extension of <span>\\\\(\\\\mathbb {Q}\\\\)</span> can be described by cyclotomic polynomials in a certain precise manner. A recent work of Lei has made progress on this problem by proving that the fine Mordell–Weil group (in the sense of Wuthrich) does have this required property. The goal of this paper is to study analogous questions of Greenberg over various <span>\\\\(\\\\mathbb {Z}_{p}\\\\)</span>-extensions of an imaginary quadratic field <i>F</i>. In particular, when the elliptic curve has complex multiplication by the ring of integers of the imaginary quadratic field, we obtain results that are analogous to those of Lei over the cyclotomic <span>\\\\(\\\\mathbb {Z}_{p}\\\\)</span>-extension and anti-cyclotomic <span>\\\\(\\\\mathbb {Z}_{p}\\\\)</span>-extension of <i>F</i>. In the event that the elliptic curve has good ordinary reduction at the prime <i>p</i>, we further obtain a result over the <span>\\\\(\\\\mathbb {Z}_{p}\\\\)</span>-extension of <i>F</i> unramified outside precisely one of the prime of <i>F</i> above <i>p</i>. Finally, we study the situation of an elliptic curve over the anticyclotomic <span>\\\\(\\\\mathbb {Z}_{p}\\\\)</span>-extension under the generalized Heegner hypothesis. Along the way, we establish an analogous result for the BDP-Selmer group. This latter result is then applied to obtain a relation between the BDP <i>p</i>-adic <i>L</i>-function and the Mordell–Weil rank growth in the anticyclotomic <span>\\\\(\\\\mathbb {Z}_{p}\\\\)</span>-extension which may be of independent interest.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"49 1\",\"pages\":\"253 - 278\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-024-00230-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-024-00230-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设E是一条椭圆曲线除以\(\mathbb {Q}\)。Greenberg提出了一个问题,即在\(\mathbb {Q}\)的分环\(\mathbb {Z}_{p}\) -扩展上的精细Selmer群的结构是否可以用分环多项式以某种精确的方式来描述。Lei最近的一项工作在这个问题上取得了进展,证明了精细的Mordell-Weil群(在Wuthrich的意义上)确实具有这个必需的性质。本文的目的是研究在虚二次域f的各种\(\mathbb {Z}_{p}\) -扩展上的Greenberg的类似问题,特别是当椭圆曲线被虚二次域的整数环复乘时,我们得到了类似于Lei在F的分环\(\mathbb {Z}_{p}\) -扩展和反分环\(\mathbb {Z}_{p}\) -扩展上的结果。如果椭圆曲线在素数p处具有良好的常约化,我们进一步得到了F在p以上的一个素数外非分节的\(\mathbb {Z}_{p}\) -扩展上的结果。研究了广义Heegner假设下抗细胞分裂\(\mathbb {Z}_{p}\) -扩张上的椭圆曲线的情况。在此过程中,我们建立了BDP-Selmer群的类似结果。后一个结果随后被应用于获得BDP p进l函数与抗细胞分裂\(\mathbb {Z}_{p}\) -扩展中的莫德尔-韦尔秩增长之间的关系,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On fine Mordell–Weil groups over \(\mathbb {Z}_{p}\)-extensions of an imaginary quadratic field

Let E be an elliptic curve over \(\mathbb {Q}\). Greenberg has posed a question whether the structure of the fine Selmer group over the cyclotomic \(\mathbb {Z}_{p}\)-extension of \(\mathbb {Q}\) can be described by cyclotomic polynomials in a certain precise manner. A recent work of Lei has made progress on this problem by proving that the fine Mordell–Weil group (in the sense of Wuthrich) does have this required property. The goal of this paper is to study analogous questions of Greenberg over various \(\mathbb {Z}_{p}\)-extensions of an imaginary quadratic field F. In particular, when the elliptic curve has complex multiplication by the ring of integers of the imaginary quadratic field, we obtain results that are analogous to those of Lei over the cyclotomic \(\mathbb {Z}_{p}\)-extension and anti-cyclotomic \(\mathbb {Z}_{p}\)-extension of F. In the event that the elliptic curve has good ordinary reduction at the prime p, we further obtain a result over the \(\mathbb {Z}_{p}\)-extension of F unramified outside precisely one of the prime of F above p. Finally, we study the situation of an elliptic curve over the anticyclotomic \(\mathbb {Z}_{p}\)-extension under the generalized Heegner hypothesis. Along the way, we establish an analogous result for the BDP-Selmer group. This latter result is then applied to obtain a relation between the BDP p-adic L-function and the Mordell–Weil rank growth in the anticyclotomic \(\mathbb {Z}_{p}\)-extension which may be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信