{"title":"基于代表性功率谱密度分析的桥梁结构健康监测——以越南胡志明市公渡大桥为例","authors":"Thanh Q. Nguyen, Thuy T. Nguyen, Phuoc T. Nguyen","doi":"10.1007/s13296-024-00928-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the limitations of traditional bridge health monitoring methods by introducing the representative power spectral density (RPSD) approach, which provides a comprehensive analysis of multifrequency vibrations to detect changes in bridge stiffness under various damage conditions. Motivated by the need for more accurate and sensitive damage detection tools, this study applied RPSD to the Giongong_To bridge in Ho Chi Minh City, Vietnam, to monitor structural degradation over time. Our key findings demonstrate that as bridge damage progresses, vibrational energy shifts from high to lower frequencies, indicating a loss of stiffness. This method improves early detection capabilities, offering economic and safety benefits for bridge maintenance in infrastructure management. The RPSD approach therefore represents a valuable tool for real-time structural health monitoring, especially within extensive bridge networks like those in Vietnam.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"25 2","pages":"402 - 423"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Structural Health Monitoring of Bridges Using Representative Power Spectral Density Analysis: A Case Study on the Giongong_To Bridge, Ho Chi Minh City, Vietnam\",\"authors\":\"Thanh Q. Nguyen, Thuy T. Nguyen, Phuoc T. Nguyen\",\"doi\":\"10.1007/s13296-024-00928-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses the limitations of traditional bridge health monitoring methods by introducing the representative power spectral density (RPSD) approach, which provides a comprehensive analysis of multifrequency vibrations to detect changes in bridge stiffness under various damage conditions. Motivated by the need for more accurate and sensitive damage detection tools, this study applied RPSD to the Giongong_To bridge in Ho Chi Minh City, Vietnam, to monitor structural degradation over time. Our key findings demonstrate that as bridge damage progresses, vibrational energy shifts from high to lower frequencies, indicating a loss of stiffness. This method improves early detection capabilities, offering economic and safety benefits for bridge maintenance in infrastructure management. The RPSD approach therefore represents a valuable tool for real-time structural health monitoring, especially within extensive bridge networks like those in Vietnam.</p></div>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":\"25 2\",\"pages\":\"402 - 423\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13296-024-00928-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-024-00928-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Advanced Structural Health Monitoring of Bridges Using Representative Power Spectral Density Analysis: A Case Study on the Giongong_To Bridge, Ho Chi Minh City, Vietnam
This study addresses the limitations of traditional bridge health monitoring methods by introducing the representative power spectral density (RPSD) approach, which provides a comprehensive analysis of multifrequency vibrations to detect changes in bridge stiffness under various damage conditions. Motivated by the need for more accurate and sensitive damage detection tools, this study applied RPSD to the Giongong_To bridge in Ho Chi Minh City, Vietnam, to monitor structural degradation over time. Our key findings demonstrate that as bridge damage progresses, vibrational energy shifts from high to lower frequencies, indicating a loss of stiffness. This method improves early detection capabilities, offering economic and safety benefits for bridge maintenance in infrastructure management. The RPSD approach therefore represents a valuable tool for real-time structural health monitoring, especially within extensive bridge networks like those in Vietnam.
期刊介绍:
The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.