Frederik Wangelik, Majid Rafiei, Mahsa Pourbafrani, Wil M.P. van der Aalst
{"title":"使用生成模型发布不同的私有事件日志","authors":"Frederik Wangelik, Majid Rafiei, Mahsa Pourbafrani, Wil M.P. van der Aalst","doi":"10.1016/j.datak.2025.102450","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the industry has been witnessing an extended usage of process mining and automated event data analysis. Consequently, there is a rising significance in addressing privacy apprehensions related to the inclusion of sensitive and private information within event data utilized by process mining algorithms. State-of-the-art research mainly focuses on providing quantifiable privacy guarantees, e.g., via differential privacy, for trace variants that are used by the main process mining techniques, e.g., process discovery. However, privacy preservation techniques designed for the release of trace variants are still insufficient to meet all the demands of industry-scale utilization. Moreover, ensuring privacy guarantees in situations characterized by a high occurrence of infrequent trace variants remains a challenging endeavor. In this paper, we introduce two novel approaches for releasing differentially private trace variants based on trained generative models. With TraVaG, we leverage <em>Generative Adversarial Networks</em> (GANs) to sample from a privatized implicit variant distribution. Our second method employs <em>Denoising Diffusion Probabilistic Models</em> that reconstruct artificial trace variants from noise via trained Markov chains. Both methods offer industry-scale benefits and elevate the degree of privacy assurances, particularly in scenarios featuring a substantial prevalence of infrequent variants. Also, they overcome the shortcomings of conventional privacy preservation techniques, such as bounding the length of variants and introducing fake variants. Experimental results on real-life event data demonstrate that our approaches surpass state-of-the-art techniques in terms of privacy guarantees and utility preservation.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"159 ","pages":"Article 102450"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Releasing differentially private event logs using generative models\",\"authors\":\"Frederik Wangelik, Majid Rafiei, Mahsa Pourbafrani, Wil M.P. van der Aalst\",\"doi\":\"10.1016/j.datak.2025.102450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the industry has been witnessing an extended usage of process mining and automated event data analysis. Consequently, there is a rising significance in addressing privacy apprehensions related to the inclusion of sensitive and private information within event data utilized by process mining algorithms. State-of-the-art research mainly focuses on providing quantifiable privacy guarantees, e.g., via differential privacy, for trace variants that are used by the main process mining techniques, e.g., process discovery. However, privacy preservation techniques designed for the release of trace variants are still insufficient to meet all the demands of industry-scale utilization. Moreover, ensuring privacy guarantees in situations characterized by a high occurrence of infrequent trace variants remains a challenging endeavor. In this paper, we introduce two novel approaches for releasing differentially private trace variants based on trained generative models. With TraVaG, we leverage <em>Generative Adversarial Networks</em> (GANs) to sample from a privatized implicit variant distribution. Our second method employs <em>Denoising Diffusion Probabilistic Models</em> that reconstruct artificial trace variants from noise via trained Markov chains. Both methods offer industry-scale benefits and elevate the degree of privacy assurances, particularly in scenarios featuring a substantial prevalence of infrequent variants. Also, they overcome the shortcomings of conventional privacy preservation techniques, such as bounding the length of variants and introducing fake variants. Experimental results on real-life event data demonstrate that our approaches surpass state-of-the-art techniques in terms of privacy guarantees and utility preservation.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"159 \",\"pages\":\"Article 102450\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X2500045X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X2500045X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Releasing differentially private event logs using generative models
In recent years, the industry has been witnessing an extended usage of process mining and automated event data analysis. Consequently, there is a rising significance in addressing privacy apprehensions related to the inclusion of sensitive and private information within event data utilized by process mining algorithms. State-of-the-art research mainly focuses on providing quantifiable privacy guarantees, e.g., via differential privacy, for trace variants that are used by the main process mining techniques, e.g., process discovery. However, privacy preservation techniques designed for the release of trace variants are still insufficient to meet all the demands of industry-scale utilization. Moreover, ensuring privacy guarantees in situations characterized by a high occurrence of infrequent trace variants remains a challenging endeavor. In this paper, we introduce two novel approaches for releasing differentially private trace variants based on trained generative models. With TraVaG, we leverage Generative Adversarial Networks (GANs) to sample from a privatized implicit variant distribution. Our second method employs Denoising Diffusion Probabilistic Models that reconstruct artificial trace variants from noise via trained Markov chains. Both methods offer industry-scale benefits and elevate the degree of privacy assurances, particularly in scenarios featuring a substantial prevalence of infrequent variants. Also, they overcome the shortcomings of conventional privacy preservation techniques, such as bounding the length of variants and introducing fake variants. Experimental results on real-life event data demonstrate that our approaches surpass state-of-the-art techniques in terms of privacy guarantees and utility preservation.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.