基于输入-输出测量数据的具有执行器和传感器故障的离散线性系统容错q学习

Mohammadrasoul Kankashvar, Sajad Rafiee, Hossein Bolandi
{"title":"基于输入-输出测量数据的具有执行器和传感器故障的离散线性系统容错q学习","authors":"Mohammadrasoul Kankashvar,&nbsp;Sajad Rafiee,&nbsp;Hossein Bolandi","doi":"10.1016/j.fraope.2025.100259","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel output feedback Q-learning algorithm specifically designed for fault-tolerant control in real-time applications, circumventing the necessity for explicit system models or detailed actuator and sensor fault information. A significant benefit of this algorithm is its capability to simultaneously achieve optimality and stabilize systems with both actuator and sensor faults. Unlike traditional methods, it learns online using input-output data from the faulty system, bypassing the need for full-state measurements. We develop a unique expression of the Fault-Tolerant Q-function (FTQF) in the input-output format and derive a model-free optimal output feedback fault-tolerant control (FTC) policy. Furthermore, the algorithm's real-time implementation process is detailed, showing its adaptability in acquiring optimal output feedback FTC policies without prior knowledge of system dynamics or faults. The proposed method remains unaffected by excitation noise bias, even without a discount factor, and guarantees closed-loop stability and convergence to optimal solutions. Validation through numerical simulations on an F-16 autopilot aircraft underscores its effectiveness.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100259"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerant Q-learning for discrete-time linear systems with actuator and sensor faults using input-output measured data\",\"authors\":\"Mohammadrasoul Kankashvar,&nbsp;Sajad Rafiee,&nbsp;Hossein Bolandi\",\"doi\":\"10.1016/j.fraope.2025.100259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel output feedback Q-learning algorithm specifically designed for fault-tolerant control in real-time applications, circumventing the necessity for explicit system models or detailed actuator and sensor fault information. A significant benefit of this algorithm is its capability to simultaneously achieve optimality and stabilize systems with both actuator and sensor faults. Unlike traditional methods, it learns online using input-output data from the faulty system, bypassing the need for full-state measurements. We develop a unique expression of the Fault-Tolerant Q-function (FTQF) in the input-output format and derive a model-free optimal output feedback fault-tolerant control (FTC) policy. Furthermore, the algorithm's real-time implementation process is detailed, showing its adaptability in acquiring optimal output feedback FTC policies without prior knowledge of system dynamics or faults. The proposed method remains unaffected by excitation noise bias, even without a discount factor, and guarantees closed-loop stability and convergence to optimal solutions. Validation through numerical simulations on an F-16 autopilot aircraft underscores its effectiveness.</div></div>\",\"PeriodicalId\":100554,\"journal\":{\"name\":\"Franklin Open\",\"volume\":\"11 \",\"pages\":\"Article 100259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Franklin Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773186325000490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新颖的输出反馈q -学习算法,专为实时应用中的容错控制而设计,避免了对显式系统模型或详细的执行器和传感器故障信息的需要。该算法的一个显著优点是它能够同时实现最优性并稳定执行器和传感器故障的系统。与传统方法不同,它使用故障系统的输入-输出数据在线学习,而无需进行全状态测量。本文提出了输入输出格式下容错q函数(FTQF)的唯一表达式,并推导出无模型最优输出反馈容错控制(FTC)策略。此外,详细介绍了该算法的实时实现过程,显示了其在不预先了解系统动力学或故障的情况下获取最优输出反馈FTC策略的适应性。所提出的方法不受激励噪声偏差的影响,即使没有折现因子,也能保证闭环的稳定性和收敛到最优解。通过F-16自动驾驶飞机的数值模拟验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-tolerant Q-learning for discrete-time linear systems with actuator and sensor faults using input-output measured data
This study presents a novel output feedback Q-learning algorithm specifically designed for fault-tolerant control in real-time applications, circumventing the necessity for explicit system models or detailed actuator and sensor fault information. A significant benefit of this algorithm is its capability to simultaneously achieve optimality and stabilize systems with both actuator and sensor faults. Unlike traditional methods, it learns online using input-output data from the faulty system, bypassing the need for full-state measurements. We develop a unique expression of the Fault-Tolerant Q-function (FTQF) in the input-output format and derive a model-free optimal output feedback fault-tolerant control (FTC) policy. Furthermore, the algorithm's real-time implementation process is detailed, showing its adaptability in acquiring optimal output feedback FTC policies without prior knowledge of system dynamics or faults. The proposed method remains unaffected by excitation noise bias, even without a discount factor, and guarantees closed-loop stability and convergence to optimal solutions. Validation through numerical simulations on an F-16 autopilot aircraft underscores its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信