Xiang Zhang , Qiang Zhu , Tao Hu , Song Guo , Genqing Bian , Wei Dong , Rao Hong , Xia Ling Lin , Peng Wu , Meili Zhou , Qingsen Yan , Ghulam Mohi-ud-din , Chen Ai , Zhou Li
{"title":"联合高分辨率特征学习和血管形状感知卷积用于有效的血管分割","authors":"Xiang Zhang , Qiang Zhu , Tao Hu , Song Guo , Genqing Bian , Wei Dong , Rao Hong , Xia Ling Lin , Peng Wu , Meili Zhou , Qingsen Yan , Ghulam Mohi-ud-din , Chen Ai , Zhou Li","doi":"10.1016/j.compbiomed.2025.109982","DOIUrl":null,"url":null,"abstract":"<div><div>Clear imagery of retinal vessels is one of the critical shreds of evidence in specific disease diagnosis and evaluation, including sophisticated hierarchical topology and plentiful-and-intensive capillaries. In this work, we propose a new topology- and shape-aware model named Multi-branch Vessel-shaped Convolution Network (MVCN) to adaptively learn high-resolution representations from retinal vessel imagery and thereby capture high-quality topology and shape information thereon. Two steps are involved in our pipeline. The former step is proposed as Multiple High-resolution Ensemble Module (MHEM) to enhance high-resolution characteristics of retinal vessel imagery via fusing scale-invariant hierarchical topology thereof. The latter is a novel vessel-shaped convolution that captures the retinal vessel topology to emerge from unrelated fundus structures. Moreover, our MVCN of separating such topology from the fundus is a dynamical multiple sub-label generation via using epistemic uncertainty, instead of manually separating raw labels to distinguish definitive and uncertain vessels. Compared to other existing methods, our method achieves the most advanced <em>AUC</em> values of 98.31%, 98.80%, 98.83%, and 98.65%, and the most advanced <em>ACC</em> of 95.83%, 96.82%, 97.09%,and 96.66% in DRIVE, CHASE_DB1, STARE, and HRF datasets. We also employ correctness, completeness, and quality metrics to evaluate skeletal similarity. Our method’s evaluation metrics have doubled compared to previous methods, thereby demonstrating the effectiveness thereof.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 109982"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint high-resolution feature learning and vessel-shape aware convolutions for efficient vessel segmentation\",\"authors\":\"Xiang Zhang , Qiang Zhu , Tao Hu , Song Guo , Genqing Bian , Wei Dong , Rao Hong , Xia Ling Lin , Peng Wu , Meili Zhou , Qingsen Yan , Ghulam Mohi-ud-din , Chen Ai , Zhou Li\",\"doi\":\"10.1016/j.compbiomed.2025.109982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clear imagery of retinal vessels is one of the critical shreds of evidence in specific disease diagnosis and evaluation, including sophisticated hierarchical topology and plentiful-and-intensive capillaries. In this work, we propose a new topology- and shape-aware model named Multi-branch Vessel-shaped Convolution Network (MVCN) to adaptively learn high-resolution representations from retinal vessel imagery and thereby capture high-quality topology and shape information thereon. Two steps are involved in our pipeline. The former step is proposed as Multiple High-resolution Ensemble Module (MHEM) to enhance high-resolution characteristics of retinal vessel imagery via fusing scale-invariant hierarchical topology thereof. The latter is a novel vessel-shaped convolution that captures the retinal vessel topology to emerge from unrelated fundus structures. Moreover, our MVCN of separating such topology from the fundus is a dynamical multiple sub-label generation via using epistemic uncertainty, instead of manually separating raw labels to distinguish definitive and uncertain vessels. Compared to other existing methods, our method achieves the most advanced <em>AUC</em> values of 98.31%, 98.80%, 98.83%, and 98.65%, and the most advanced <em>ACC</em> of 95.83%, 96.82%, 97.09%,and 96.66% in DRIVE, CHASE_DB1, STARE, and HRF datasets. We also employ correctness, completeness, and quality metrics to evaluate skeletal similarity. Our method’s evaluation metrics have doubled compared to previous methods, thereby demonstrating the effectiveness thereof.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"191 \",\"pages\":\"Article 109982\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525003336\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525003336","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Joint high-resolution feature learning and vessel-shape aware convolutions for efficient vessel segmentation
Clear imagery of retinal vessels is one of the critical shreds of evidence in specific disease diagnosis and evaluation, including sophisticated hierarchical topology and plentiful-and-intensive capillaries. In this work, we propose a new topology- and shape-aware model named Multi-branch Vessel-shaped Convolution Network (MVCN) to adaptively learn high-resolution representations from retinal vessel imagery and thereby capture high-quality topology and shape information thereon. Two steps are involved in our pipeline. The former step is proposed as Multiple High-resolution Ensemble Module (MHEM) to enhance high-resolution characteristics of retinal vessel imagery via fusing scale-invariant hierarchical topology thereof. The latter is a novel vessel-shaped convolution that captures the retinal vessel topology to emerge from unrelated fundus structures. Moreover, our MVCN of separating such topology from the fundus is a dynamical multiple sub-label generation via using epistemic uncertainty, instead of manually separating raw labels to distinguish definitive and uncertain vessels. Compared to other existing methods, our method achieves the most advanced AUC values of 98.31%, 98.80%, 98.83%, and 98.65%, and the most advanced ACC of 95.83%, 96.82%, 97.09%,and 96.66% in DRIVE, CHASE_DB1, STARE, and HRF datasets. We also employ correctness, completeness, and quality metrics to evaluate skeletal similarity. Our method’s evaluation metrics have doubled compared to previous methods, thereby demonstrating the effectiveness thereof.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.