Blanca Priego-Torres , Daniel Sanchez-Morillo , Ebrahim Khalili , Miguel Ángel Conde-Sánchez , Andrés García-Gámez , Antonio León-Jiménez
{"title":"利用深度学习对 X 射线进行工程石矽肺病自动筛查和分期","authors":"Blanca Priego-Torres , Daniel Sanchez-Morillo , Ebrahim Khalili , Miguel Ángel Conde-Sánchez , Andrés García-Gámez , Antonio León-Jiménez","doi":"10.1016/j.compbiomed.2025.110153","DOIUrl":null,"url":null,"abstract":"<div><div>Silicosis, a debilitating occupational lung disease caused by inhaling crystalline silica, continues to be a significant global health issue, especially with the increasing use of engineered stone (ES) surfaces containing high silica content. Traditional diagnostic methods, dependent on radiological interpretation, have low sensitivity, especially, in the early stages of the disease, and present variability between evaluators. This study explores the efficacy of deep learning techniques in automating the screening and staging of silicosis using chest X-ray images.</div><div>Utilizing a comprehensive dataset, obtained from the medical records of a cohort of workers exposed to artificial quartz conglomerates, we implemented a preprocessing stage for rib-cage segmentation, followed by classification using state-of-the-art deep learning models. The segmentation model exhibited high precision, ensuring accurate identification of thoracic structures. In the screening phase, our models achieved near-perfect accuracy, with ROC AUC values reaching 1.0, effectively distinguishing between healthy individuals and those with silicosis.</div><div>The models demonstrated remarkable precision in the staging of the disease. Nevertheless, differentiating between simple silicosis and progressive massive fibrosis, the evolved and complicated form of the disease, presented certain difficulties, especially during the transitional period, when assessment can be significantly subjective. Notwithstanding these difficulties, the models achieved an accuracy of around 81% and ROC AUC scores nearing 0.93.</div><div>This study highlights the potential of deep learning to generate clinical decision support tools to increase the accuracy and effectiveness in the diagnosis and staging of silicosis, whose early detection would allow the patient to be moved away from all sources of occupational exposure, therefore constituting a substantial advancement in occupational health diagnostics.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 110153"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated engineered-stone silicosis screening and staging using Deep Learning with X-rays\",\"authors\":\"Blanca Priego-Torres , Daniel Sanchez-Morillo , Ebrahim Khalili , Miguel Ángel Conde-Sánchez , Andrés García-Gámez , Antonio León-Jiménez\",\"doi\":\"10.1016/j.compbiomed.2025.110153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicosis, a debilitating occupational lung disease caused by inhaling crystalline silica, continues to be a significant global health issue, especially with the increasing use of engineered stone (ES) surfaces containing high silica content. Traditional diagnostic methods, dependent on radiological interpretation, have low sensitivity, especially, in the early stages of the disease, and present variability between evaluators. This study explores the efficacy of deep learning techniques in automating the screening and staging of silicosis using chest X-ray images.</div><div>Utilizing a comprehensive dataset, obtained from the medical records of a cohort of workers exposed to artificial quartz conglomerates, we implemented a preprocessing stage for rib-cage segmentation, followed by classification using state-of-the-art deep learning models. The segmentation model exhibited high precision, ensuring accurate identification of thoracic structures. In the screening phase, our models achieved near-perfect accuracy, with ROC AUC values reaching 1.0, effectively distinguishing between healthy individuals and those with silicosis.</div><div>The models demonstrated remarkable precision in the staging of the disease. Nevertheless, differentiating between simple silicosis and progressive massive fibrosis, the evolved and complicated form of the disease, presented certain difficulties, especially during the transitional period, when assessment can be significantly subjective. Notwithstanding these difficulties, the models achieved an accuracy of around 81% and ROC AUC scores nearing 0.93.</div><div>This study highlights the potential of deep learning to generate clinical decision support tools to increase the accuracy and effectiveness in the diagnosis and staging of silicosis, whose early detection would allow the patient to be moved away from all sources of occupational exposure, therefore constituting a substantial advancement in occupational health diagnostics.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"191 \",\"pages\":\"Article 110153\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525005049\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Automated engineered-stone silicosis screening and staging using Deep Learning with X-rays
Silicosis, a debilitating occupational lung disease caused by inhaling crystalline silica, continues to be a significant global health issue, especially with the increasing use of engineered stone (ES) surfaces containing high silica content. Traditional diagnostic methods, dependent on radiological interpretation, have low sensitivity, especially, in the early stages of the disease, and present variability between evaluators. This study explores the efficacy of deep learning techniques in automating the screening and staging of silicosis using chest X-ray images.
Utilizing a comprehensive dataset, obtained from the medical records of a cohort of workers exposed to artificial quartz conglomerates, we implemented a preprocessing stage for rib-cage segmentation, followed by classification using state-of-the-art deep learning models. The segmentation model exhibited high precision, ensuring accurate identification of thoracic structures. In the screening phase, our models achieved near-perfect accuracy, with ROC AUC values reaching 1.0, effectively distinguishing between healthy individuals and those with silicosis.
The models demonstrated remarkable precision in the staging of the disease. Nevertheless, differentiating between simple silicosis and progressive massive fibrosis, the evolved and complicated form of the disease, presented certain difficulties, especially during the transitional period, when assessment can be significantly subjective. Notwithstanding these difficulties, the models achieved an accuracy of around 81% and ROC AUC scores nearing 0.93.
This study highlights the potential of deep learning to generate clinical decision support tools to increase the accuracy and effectiveness in the diagnosis and staging of silicosis, whose early detection would allow the patient to be moved away from all sources of occupational exposure, therefore constituting a substantial advancement in occupational health diagnostics.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.