Suddhasattwa Brahma, Jaime Calderón-Figueroa, Xiancong Luo and David Seery
{"title":"德西特慢滚吸引子的特殊情况:非马尔可夫噪声和纠缠熵的演化","authors":"Suddhasattwa Brahma, Jaime Calderón-Figueroa, Xiancong Luo and David Seery","doi":"10.1088/1475-7516/2025/04/050","DOIUrl":null,"url":null,"abstract":"We analyse the evolution of the reduced density matrix of inflationary perturbations, coupled to a heavy entropic field via the leading-order term within the Effective Field Theory of Inflation, for two nearly de Sitter backgrounds. We perform a full quantum treatment of the open system and derive a Fokker-Planck equation to describe decoherence and the entanglement structure of the adiabatic perturbations. We find that exotic phenomena, such as recoherence and transient negative growth of entanglement entropy, appearing for the attractor solution, are absent for the non-attractor background. We comment on the relationship of these to the non-Markovian nature of the system. Finally, we generalise to the case where a few e-folds of ultra-slow roll evolution are sandwiched between phases of slow-roll inflation to find its (memory) effects on the curvature perturbation.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"137 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The special case of slow-roll attractors in de Sitter: non-Markovian noise and evolution of entanglement entropy\",\"authors\":\"Suddhasattwa Brahma, Jaime Calderón-Figueroa, Xiancong Luo and David Seery\",\"doi\":\"10.1088/1475-7516/2025/04/050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse the evolution of the reduced density matrix of inflationary perturbations, coupled to a heavy entropic field via the leading-order term within the Effective Field Theory of Inflation, for two nearly de Sitter backgrounds. We perform a full quantum treatment of the open system and derive a Fokker-Planck equation to describe decoherence and the entanglement structure of the adiabatic perturbations. We find that exotic phenomena, such as recoherence and transient negative growth of entanglement entropy, appearing for the attractor solution, are absent for the non-attractor background. We comment on the relationship of these to the non-Markovian nature of the system. Finally, we generalise to the case where a few e-folds of ultra-slow roll evolution are sandwiched between phases of slow-roll inflation to find its (memory) effects on the curvature perturbation.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/04/050\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/050","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The special case of slow-roll attractors in de Sitter: non-Markovian noise and evolution of entanglement entropy
We analyse the evolution of the reduced density matrix of inflationary perturbations, coupled to a heavy entropic field via the leading-order term within the Effective Field Theory of Inflation, for two nearly de Sitter backgrounds. We perform a full quantum treatment of the open system and derive a Fokker-Planck equation to describe decoherence and the entanglement structure of the adiabatic perturbations. We find that exotic phenomena, such as recoherence and transient negative growth of entanglement entropy, appearing for the attractor solution, are absent for the non-attractor background. We comment on the relationship of these to the non-Markovian nature of the system. Finally, we generalise to the case where a few e-folds of ultra-slow roll evolution are sandwiched between phases of slow-roll inflation to find its (memory) effects on the curvature perturbation.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.