双酉量子电路的本征态相关:部分谱形式因子

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-04-17 DOI:10.22331/q-2025-04-17-1709
Felix Fritzsch, Maximilian F. I. Kieler, Arnd Bäcker
{"title":"双酉量子电路的本征态相关:部分谱形式因子","authors":"Felix Fritzsch, Maximilian F. I. Kieler, Arnd Bäcker","doi":"10.22331/q-2025-04-17-1709","DOIUrl":null,"url":null,"abstract":"While the notion of quantum chaos is tied to random matrix spectral correlations, also eigenstate properties in chaotic systems are often assumed to be described by random matrix theory. Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor. Here, we study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit. We compute the latter for a finite subsystem in a brickwork circuit coupled to an infinite complement. For initial times, shorter than the subsystem's size, spatial locality and (dual) unitarity implies a constant partial spectral form factor, clearly deviating from the linear ramp of the random matrix prediction. In contrast, for larger times we prove, that the partial spectral form factor follows the random matrix result up to exponentially suppressed corrections. We supplement our exact analytical results by semi-analytic computations performed in the thermodynamic limit as well as with numerics for finite-size systems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"10 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenstate Correlations in Dual-Unitary Quantum Circuits: Partial Spectral Form Factor\",\"authors\":\"Felix Fritzsch, Maximilian F. I. Kieler, Arnd Bäcker\",\"doi\":\"10.22331/q-2025-04-17-1709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the notion of quantum chaos is tied to random matrix spectral correlations, also eigenstate properties in chaotic systems are often assumed to be described by random matrix theory. Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor. Here, we study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit. We compute the latter for a finite subsystem in a brickwork circuit coupled to an infinite complement. For initial times, shorter than the subsystem's size, spatial locality and (dual) unitarity implies a constant partial spectral form factor, clearly deviating from the linear ramp of the random matrix prediction. In contrast, for larger times we prove, that the partial spectral form factor follows the random matrix result up to exponentially suppressed corrections. We supplement our exact analytical results by semi-analytic computations performed in the thermodynamic limit as well as with numerics for finite-size systems.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-04-17-1709\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-17-1709","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当量子混沌的概念与随机矩阵谱相关联系在一起时,混沌系统的特征态特性通常被认为是由随机矩阵理论描述的。对特征态相关性的分析见解可以通过最近引入的部分谱形式因子获得。本文研究了混沌双酉量子电路在热力学极限下的部分谱形式因子。我们计算了砖砌电路中与无限补相耦合的有限子系统的后者。对于初始时间,小于子系统的大小,空间局部性和(对偶)统一性意味着一个恒定的部分谱形式因子,明显偏离随机矩阵预测的线性斜坡。相反,对于较大的时间,我们证明,部分频谱形式因子遵循随机矩阵结果直到指数抑制修正。我们通过在热力学极限下进行的半解析计算以及有限大小系统的数值计算来补充我们的精确解析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenstate Correlations in Dual-Unitary Quantum Circuits: Partial Spectral Form Factor
While the notion of quantum chaos is tied to random matrix spectral correlations, also eigenstate properties in chaotic systems are often assumed to be described by random matrix theory. Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor. Here, we study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit. We compute the latter for a finite subsystem in a brickwork circuit coupled to an infinite complement. For initial times, shorter than the subsystem's size, spatial locality and (dual) unitarity implies a constant partial spectral form factor, clearly deviating from the linear ramp of the random matrix prediction. In contrast, for larger times we prove, that the partial spectral form factor follows the random matrix result up to exponentially suppressed corrections. We supplement our exact analytical results by semi-analytic computations performed in the thermodynamic limit as well as with numerics for finite-size systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信