{"title":"能量临界等变调和映射热流和径向非线性热方程的全局动力学分类","authors":"Kihyun Kim, Frank Merle","doi":"10.1002/cpa.22253","DOIUrl":null,"url":null,"abstract":"We consider the global dynamics of finite energy solutions to energy‐critical equivariant harmonic map heat flow (HMHF) and radial nonlinear heat equation (NLH). It is known that any finite energy equivariant solutions to (HMHF) decompose into finitely many harmonic maps (bubbles) separated by scales and a body map, as approaching to the maximal time of existence. Our main result for (HMHF) gives a complete classification of their dynamics for equivariance indices ; (i) they exist globally in time, (ii) the number of bubbles and signs are determined by the energy class of the initial data, and (iii) the scales of bubbles are asymptotically given by a universal sequence of rates up to scaling symmetry. In parallel, we also obtain a complete classification of ‐bounded radial solutions to (NLH) in dimensions , building upon soliton resolution for such solutions. To our knowledge, this provides the first rigorous classification of bubble tree dynamics within symmetry. We introduce a new approach based on the energy method that does not rely on maximum principle. The key ingredient of the proof is a monotonicity estimate near any bubble tree configurations, which in turn requires a delicate construction of modified multi‐bubble profiles also.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On classification of global dynamics for energy‐critical equivariant harmonic map heat flows and radial nonlinear heat equation\",\"authors\":\"Kihyun Kim, Frank Merle\",\"doi\":\"10.1002/cpa.22253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the global dynamics of finite energy solutions to energy‐critical equivariant harmonic map heat flow (HMHF) and radial nonlinear heat equation (NLH). It is known that any finite energy equivariant solutions to (HMHF) decompose into finitely many harmonic maps (bubbles) separated by scales and a body map, as approaching to the maximal time of existence. Our main result for (HMHF) gives a complete classification of their dynamics for equivariance indices ; (i) they exist globally in time, (ii) the number of bubbles and signs are determined by the energy class of the initial data, and (iii) the scales of bubbles are asymptotically given by a universal sequence of rates up to scaling symmetry. In parallel, we also obtain a complete classification of ‐bounded radial solutions to (NLH) in dimensions , building upon soliton resolution for such solutions. To our knowledge, this provides the first rigorous classification of bubble tree dynamics within symmetry. We introduce a new approach based on the energy method that does not rely on maximum principle. The key ingredient of the proof is a monotonicity estimate near any bubble tree configurations, which in turn requires a delicate construction of modified multi‐bubble profiles also.\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/cpa.22253\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22253","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On classification of global dynamics for energy‐critical equivariant harmonic map heat flows and radial nonlinear heat equation
We consider the global dynamics of finite energy solutions to energy‐critical equivariant harmonic map heat flow (HMHF) and radial nonlinear heat equation (NLH). It is known that any finite energy equivariant solutions to (HMHF) decompose into finitely many harmonic maps (bubbles) separated by scales and a body map, as approaching to the maximal time of existence. Our main result for (HMHF) gives a complete classification of their dynamics for equivariance indices ; (i) they exist globally in time, (ii) the number of bubbles and signs are determined by the energy class of the initial data, and (iii) the scales of bubbles are asymptotically given by a universal sequence of rates up to scaling symmetry. In parallel, we also obtain a complete classification of ‐bounded radial solutions to (NLH) in dimensions , building upon soliton resolution for such solutions. To our knowledge, this provides the first rigorous classification of bubble tree dynamics within symmetry. We introduce a new approach based on the energy method that does not rely on maximum principle. The key ingredient of the proof is a monotonicity estimate near any bubble tree configurations, which in turn requires a delicate construction of modified multi‐bubble profiles also.