Cristina Benso, Thomas Schwetz and Drona Vatsyayan
{"title":"宇宙学中的大中微子质量和来自黑暗区域的keV无菌中微子暗物质","authors":"Cristina Benso, Thomas Schwetz and Drona Vatsyayan","doi":"10.1088/1475-7516/2025/04/054","DOIUrl":null,"url":null,"abstract":"We consider an extended seesaw model which generates active neutrino masses via the usual type-I seesaw and leads to a large number of massless fermions as well as a sterile neutrino dark matter (DM) candidate in the 𝒪(10–100) keV mass range. The dark sector comes into thermal equilibrium with Standard Model neutrinos after neutrino decoupling and before recombination via a U(1) gauge interaction in the dark sector. This suppresses the abundance of active neutrinos and therefore reconciles sizeable neutrino masses with cosmology. The DM abundance is determined by freeze-out in the dark sector, which allows avoiding bounds from X-ray searches. Our scenario predicts a slight increase in the effective number of neutrino species Neff at recombination, potentially detectable by future CMB missions.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"64 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large neutrino mass in cosmology and keV sterile neutrino dark matter from a dark sector\",\"authors\":\"Cristina Benso, Thomas Schwetz and Drona Vatsyayan\",\"doi\":\"10.1088/1475-7516/2025/04/054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an extended seesaw model which generates active neutrino masses via the usual type-I seesaw and leads to a large number of massless fermions as well as a sterile neutrino dark matter (DM) candidate in the 𝒪(10–100) keV mass range. The dark sector comes into thermal equilibrium with Standard Model neutrinos after neutrino decoupling and before recombination via a U(1) gauge interaction in the dark sector. This suppresses the abundance of active neutrinos and therefore reconciles sizeable neutrino masses with cosmology. The DM abundance is determined by freeze-out in the dark sector, which allows avoiding bounds from X-ray searches. Our scenario predicts a slight increase in the effective number of neutrino species Neff at recombination, potentially detectable by future CMB missions.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/04/054\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/054","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Large neutrino mass in cosmology and keV sterile neutrino dark matter from a dark sector
We consider an extended seesaw model which generates active neutrino masses via the usual type-I seesaw and leads to a large number of massless fermions as well as a sterile neutrino dark matter (DM) candidate in the 𝒪(10–100) keV mass range. The dark sector comes into thermal equilibrium with Standard Model neutrinos after neutrino decoupling and before recombination via a U(1) gauge interaction in the dark sector. This suppresses the abundance of active neutrinos and therefore reconciles sizeable neutrino masses with cosmology. The DM abundance is determined by freeze-out in the dark sector, which allows avoiding bounds from X-ray searches. Our scenario predicts a slight increase in the effective number of neutrino species Neff at recombination, potentially detectable by future CMB missions.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.