{"title":"干涉二元相位估计","authors":"Simone Roncallo, Xi Lu, Lorenzo Maccone","doi":"10.22331/q-2025-04-18-1713","DOIUrl":null,"url":null,"abstract":"We propose an interferometric scheme where each photon returns one bit of the binary expansion of an unknown phase. It sets up a method for estimating the phase value at arbitrary uncertainty. This strategy is global, since it requires no prior information, and it achieves the Heisenberg bound independently of the output statistics. We provide simulations and a characterization of this architecture.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"29 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interferometric binary phase estimations\",\"authors\":\"Simone Roncallo, Xi Lu, Lorenzo Maccone\",\"doi\":\"10.22331/q-2025-04-18-1713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an interferometric scheme where each photon returns one bit of the binary expansion of an unknown phase. It sets up a method for estimating the phase value at arbitrary uncertainty. This strategy is global, since it requires no prior information, and it achieves the Heisenberg bound independently of the output statistics. We provide simulations and a characterization of this architecture.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-04-18-1713\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-18-1713","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We propose an interferometric scheme where each photon returns one bit of the binary expansion of an unknown phase. It sets up a method for estimating the phase value at arbitrary uncertainty. This strategy is global, since it requires no prior information, and it achieves the Heisenberg bound independently of the output statistics. We provide simulations and a characterization of this architecture.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.