基于动态卷积和视觉曼巴的图像压缩模型

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lingchen Qiu, Enjian Bai, Yun Wu, Yuwen Cao, Xue-qin Jiang
{"title":"基于动态卷积和视觉曼巴的图像压缩模型","authors":"Lingchen Qiu,&nbsp;Enjian Bai,&nbsp;Yun Wu,&nbsp;Yuwen Cao,&nbsp;Xue-qin Jiang","doi":"10.1049/ipr2.70080","DOIUrl":null,"url":null,"abstract":"<p>We propose an efficient image compression scheme leveraging Vision Mamba and dynamic convolution, addressing the limitations of existing methods, such as failure to capture long-range pixel dependencies and high computational complexity. Our approach improves both global and local information learning with reduced computational cost. Experimental results on the Kodak, Tecnick and CLIC datasets show that our model achieves competitive performance with lower algorithm complexity. Our code is available on: https://github.com/Lynxsx/ICVM.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70080","citationCount":"0","resultStr":"{\"title\":\"Image Compression Model Based on Dynamic Convolution and Vision Mamba\",\"authors\":\"Lingchen Qiu,&nbsp;Enjian Bai,&nbsp;Yun Wu,&nbsp;Yuwen Cao,&nbsp;Xue-qin Jiang\",\"doi\":\"10.1049/ipr2.70080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose an efficient image compression scheme leveraging Vision Mamba and dynamic convolution, addressing the limitations of existing methods, such as failure to capture long-range pixel dependencies and high computational complexity. Our approach improves both global and local information learning with reduced computational cost. Experimental results on the Kodak, Tecnick and CLIC datasets show that our model achieves competitive performance with lower algorithm complexity. Our code is available on: https://github.com/Lynxsx/ICVM.</p>\",\"PeriodicalId\":56303,\"journal\":{\"name\":\"IET Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70080\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70080","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用视觉曼巴和动态卷积的有效图像压缩方案,解决了现有方法的局限性,例如无法捕获远程像素依赖性和高计算复杂性。我们的方法改进了全局和局部信息学习,减少了计算成本。在Kodak, Tecnick和CLIC数据集上的实验结果表明,我们的模型以较低的算法复杂度获得了具有竞争力的性能。我们的代码可以在https://github.com/Lynxsx/ICVM上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Image Compression Model Based on Dynamic Convolution and Vision Mamba

Image Compression Model Based on Dynamic Convolution and Vision Mamba

We propose an efficient image compression scheme leveraging Vision Mamba and dynamic convolution, addressing the limitations of existing methods, such as failure to capture long-range pixel dependencies and high computational complexity. Our approach improves both global and local information learning with reduced computational cost. Experimental results on the Kodak, Tecnick and CLIC datasets show that our model achieves competitive performance with lower algorithm complexity. Our code is available on: https://github.com/Lynxsx/ICVM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信