{"title":"基于一维深度卷积神经网络的轴承不平衡健康和高健康状态智能故障诊断方法","authors":"Temesgen Tadesse Feisa, Hailu Shimels Gebremedhen, Fasikaw Kibrete, Dereje Engida Woldemichael","doi":"10.1155/stc/6498371","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Modern industrial systems depend heavily on rotating machines, especially rolling element bearings (REBs), to facilitate operations. These components are prone to failure under harsh and variable operating conditions, leading to downtime and financial losses, which emphasizes the need for accurate REB fault diagnosis. Recently, interest has surged in using deep learning, particularly convolutional neural networks (CNNs), for bearing fault diagnosis. However, training CNN models requires extensive data and balanced bearing health states, which existing methods often assume. In addition, while practical scenarios encompass a diverse range of bearing fault conditions, current methods often focus on a limited range of scenarios. Hence, this paper proposes an enhanced method utilizing a one-dimensional deep CNN to ensure reliable operation, with its effectiveness evaluated on Case Western Reserve University (CWRU) rolling bearing datasets. The experimental results showed that the diagnostic accuracy reached 100% under 0∼3 hp working loads for 10 unbalanced health classes. Moreover, it attained 100% accuracy for high-class health states with 20, 30, and 40 classes, and when extended to 64 health classes, it reached a peak accuracy of 99.96%. Thus, the method achieved improved classification ability and stability by employing a straightforward model architecture, along with the integration of batch normalization and dropout operations. Comparative analysis with existing diagnostic methods further underscores the model superiority, particularly in scenarios involving unbalanced and high-class health states, thus emphasizing its effectiveness and robustness. These findings significantly advance the field of intelligent bearing fault diagnosis.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6498371","citationCount":"0","resultStr":"{\"title\":\"One-Dimensional Deep Convolutional Neural Network-Based Intelligent Fault Diagnosis Method for Bearings Under Unbalanced Health and High-Class Health States\",\"authors\":\"Temesgen Tadesse Feisa, Hailu Shimels Gebremedhen, Fasikaw Kibrete, Dereje Engida Woldemichael\",\"doi\":\"10.1155/stc/6498371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Modern industrial systems depend heavily on rotating machines, especially rolling element bearings (REBs), to facilitate operations. These components are prone to failure under harsh and variable operating conditions, leading to downtime and financial losses, which emphasizes the need for accurate REB fault diagnosis. Recently, interest has surged in using deep learning, particularly convolutional neural networks (CNNs), for bearing fault diagnosis. However, training CNN models requires extensive data and balanced bearing health states, which existing methods often assume. In addition, while practical scenarios encompass a diverse range of bearing fault conditions, current methods often focus on a limited range of scenarios. Hence, this paper proposes an enhanced method utilizing a one-dimensional deep CNN to ensure reliable operation, with its effectiveness evaluated on Case Western Reserve University (CWRU) rolling bearing datasets. The experimental results showed that the diagnostic accuracy reached 100% under 0∼3 hp working loads for 10 unbalanced health classes. Moreover, it attained 100% accuracy for high-class health states with 20, 30, and 40 classes, and when extended to 64 health classes, it reached a peak accuracy of 99.96%. Thus, the method achieved improved classification ability and stability by employing a straightforward model architecture, along with the integration of batch normalization and dropout operations. Comparative analysis with existing diagnostic methods further underscores the model superiority, particularly in scenarios involving unbalanced and high-class health states, thus emphasizing its effectiveness and robustness. These findings significantly advance the field of intelligent bearing fault diagnosis.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/6498371\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/6498371\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/6498371","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
One-Dimensional Deep Convolutional Neural Network-Based Intelligent Fault Diagnosis Method for Bearings Under Unbalanced Health and High-Class Health States
Modern industrial systems depend heavily on rotating machines, especially rolling element bearings (REBs), to facilitate operations. These components are prone to failure under harsh and variable operating conditions, leading to downtime and financial losses, which emphasizes the need for accurate REB fault diagnosis. Recently, interest has surged in using deep learning, particularly convolutional neural networks (CNNs), for bearing fault diagnosis. However, training CNN models requires extensive data and balanced bearing health states, which existing methods often assume. In addition, while practical scenarios encompass a diverse range of bearing fault conditions, current methods often focus on a limited range of scenarios. Hence, this paper proposes an enhanced method utilizing a one-dimensional deep CNN to ensure reliable operation, with its effectiveness evaluated on Case Western Reserve University (CWRU) rolling bearing datasets. The experimental results showed that the diagnostic accuracy reached 100% under 0∼3 hp working loads for 10 unbalanced health classes. Moreover, it attained 100% accuracy for high-class health states with 20, 30, and 40 classes, and when extended to 64 health classes, it reached a peak accuracy of 99.96%. Thus, the method achieved improved classification ability and stability by employing a straightforward model architecture, along with the integration of batch normalization and dropout operations. Comparative analysis with existing diagnostic methods further underscores the model superiority, particularly in scenarios involving unbalanced and high-class health states, thus emphasizing its effectiveness and robustness. These findings significantly advance the field of intelligent bearing fault diagnosis.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.