Manisha Samad, Benjamin Ulfenborg, Sahar Soleimani Sani, Marco Bauzá Thorbrügge, Man Mohan Shrestha, Claes Ohlsson, Manuel Maliqueo, Elisabet Stener-Victorin, Ingrid Wernstedt Asterholm, Anna Benrick
{"title":"母体脂联素降低小鼠胎盘营养转运","authors":"Manisha Samad, Benjamin Ulfenborg, Sahar Soleimani Sani, Marco Bauzá Thorbrügge, Man Mohan Shrestha, Claes Ohlsson, Manuel Maliqueo, Elisabet Stener-Victorin, Ingrid Wernstedt Asterholm, Anna Benrick","doi":"10.1096/fj.202403251RR","DOIUrl":null,"url":null,"abstract":"<p>Women with obesity who develop gestational diabetes have lower serum adiponectin throughout pregnancy, suggesting that low levels impair the ability to handle metabolic challenges during pregnancy. The placenta expresses adiponectin receptors, and adiponectin could therefore indirectly affect the developing fetus. Here, we aimed to investigate how elevated maternal and fetal adiponectin affect placental function, fetal growth, and metabolism during pregnancy in normal-weight and obese mice. Wild-type (wt) and adiponectin-overexpressing (APNtg) mice were fed normal chow or a high fat/high sucrose (HF/HS) diet 8 weeks before and during pregnancy to induce obesity. Mice were euthanized and dissected on gestational day 18.5. Lipid, glucose, and amino acid tracers were administered to the obese pregnant dams to study nutrient uptake. The effects of elevated adiponectin on fetal liver and placental function were further investigated using global proteomics. A 40%–50% increase in serum adiponectin reduced fetal growth in dams fed a HF/HS diet, but not a normal chow diet. The uptake of glucose, lipid, and amino acid tracer was lower, along with decreased expression of several amino acid transporters in the placenta of APNtg dams on HF/HS diet. This suggests that adiponectin decreases placental transfer of nutrients. Livers of fetuses from APNtg dams showed downregulated lipid and amino acid metabolic pathways possibly reflecting an energy deficit. In conclusion, elevated serum adiponectin in obese dams reduced the placental transfer of nutrients, resulting in fetal growth restriction and altered fetal liver function. Maternal adiponectin levels were the main driver of placenta function. While this could be beneficial for pregnancy-related complications like babies born large for their gestation age, our study indicates that adiponectin should be in an optimal concentration range, neither too low nor too high, to prevent these complications.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202403251RR","citationCount":"0","resultStr":"{\"title\":\"Maternal Adiponectin Decreases Placenta Nutrient Transport in Mice\",\"authors\":\"Manisha Samad, Benjamin Ulfenborg, Sahar Soleimani Sani, Marco Bauzá Thorbrügge, Man Mohan Shrestha, Claes Ohlsson, Manuel Maliqueo, Elisabet Stener-Victorin, Ingrid Wernstedt Asterholm, Anna Benrick\",\"doi\":\"10.1096/fj.202403251RR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Women with obesity who develop gestational diabetes have lower serum adiponectin throughout pregnancy, suggesting that low levels impair the ability to handle metabolic challenges during pregnancy. The placenta expresses adiponectin receptors, and adiponectin could therefore indirectly affect the developing fetus. Here, we aimed to investigate how elevated maternal and fetal adiponectin affect placental function, fetal growth, and metabolism during pregnancy in normal-weight and obese mice. Wild-type (wt) and adiponectin-overexpressing (APNtg) mice were fed normal chow or a high fat/high sucrose (HF/HS) diet 8 weeks before and during pregnancy to induce obesity. Mice were euthanized and dissected on gestational day 18.5. Lipid, glucose, and amino acid tracers were administered to the obese pregnant dams to study nutrient uptake. The effects of elevated adiponectin on fetal liver and placental function were further investigated using global proteomics. A 40%–50% increase in serum adiponectin reduced fetal growth in dams fed a HF/HS diet, but not a normal chow diet. The uptake of glucose, lipid, and amino acid tracer was lower, along with decreased expression of several amino acid transporters in the placenta of APNtg dams on HF/HS diet. This suggests that adiponectin decreases placental transfer of nutrients. Livers of fetuses from APNtg dams showed downregulated lipid and amino acid metabolic pathways possibly reflecting an energy deficit. In conclusion, elevated serum adiponectin in obese dams reduced the placental transfer of nutrients, resulting in fetal growth restriction and altered fetal liver function. Maternal adiponectin levels were the main driver of placenta function. While this could be beneficial for pregnancy-related complications like babies born large for their gestation age, our study indicates that adiponectin should be in an optimal concentration range, neither too low nor too high, to prevent these complications.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202403251RR\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202403251RR\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202403251RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Maternal Adiponectin Decreases Placenta Nutrient Transport in Mice
Women with obesity who develop gestational diabetes have lower serum adiponectin throughout pregnancy, suggesting that low levels impair the ability to handle metabolic challenges during pregnancy. The placenta expresses adiponectin receptors, and adiponectin could therefore indirectly affect the developing fetus. Here, we aimed to investigate how elevated maternal and fetal adiponectin affect placental function, fetal growth, and metabolism during pregnancy in normal-weight and obese mice. Wild-type (wt) and adiponectin-overexpressing (APNtg) mice were fed normal chow or a high fat/high sucrose (HF/HS) diet 8 weeks before and during pregnancy to induce obesity. Mice were euthanized and dissected on gestational day 18.5. Lipid, glucose, and amino acid tracers were administered to the obese pregnant dams to study nutrient uptake. The effects of elevated adiponectin on fetal liver and placental function were further investigated using global proteomics. A 40%–50% increase in serum adiponectin reduced fetal growth in dams fed a HF/HS diet, but not a normal chow diet. The uptake of glucose, lipid, and amino acid tracer was lower, along with decreased expression of several amino acid transporters in the placenta of APNtg dams on HF/HS diet. This suggests that adiponectin decreases placental transfer of nutrients. Livers of fetuses from APNtg dams showed downregulated lipid and amino acid metabolic pathways possibly reflecting an energy deficit. In conclusion, elevated serum adiponectin in obese dams reduced the placental transfer of nutrients, resulting in fetal growth restriction and altered fetal liver function. Maternal adiponectin levels were the main driver of placenta function. While this could be beneficial for pregnancy-related complications like babies born large for their gestation age, our study indicates that adiponectin should be in an optimal concentration range, neither too low nor too high, to prevent these complications.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.