基于多尺度卷积神经网络的高分辨率航拍场景分类

Ali Jamali;Swalpa Kumar Roy;Bing Lu;Leila Hashemi Beni;Nafiseh Kakhani;Pedram Ghamisi
{"title":"基于多尺度卷积神经网络的高分辨率航拍场景分类","authors":"Ali Jamali;Swalpa Kumar Roy;Bing Lu;Leila Hashemi Beni;Nafiseh Kakhani;Pedram Ghamisi","doi":"10.1109/LGRS.2025.3556373","DOIUrl":null,"url":null,"abstract":"The growing popularity of vision transformers (ViTs) in remote sensing image classification is due to their ability to effectively capture long-range dependencies. However, their high computational cost and memory footprint limit their applicability, particularly for small-scale datasets and resource-constrained environments. To address these challenges, we propose the multiscale multihead compact convolutional transformer (MSHCCT), a lightweight yet powerful model that integrates convolutional tokenization with small-scale ViTs to enhance multiscale feature representation while maintaining computational efficiency. Despite a modest increase in parameters and training time, MSHCCT achieves superior classification accuracy and robustness on high-resolution aerial scenes. Importantly, our approach eliminates the need for model pretraining, additional datasets, or multisensor data fusion, ensuring a computationally efficient and practical solution for remote sensing applications. The code will be made publicly available at <uri>https://github.com/aj1365/MSHCCT</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSHCCT: A Multiscale Compact Convolutional Network for High-Resolution Aerial Scene Classification\",\"authors\":\"Ali Jamali;Swalpa Kumar Roy;Bing Lu;Leila Hashemi Beni;Nafiseh Kakhani;Pedram Ghamisi\",\"doi\":\"10.1109/LGRS.2025.3556373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing popularity of vision transformers (ViTs) in remote sensing image classification is due to their ability to effectively capture long-range dependencies. However, their high computational cost and memory footprint limit their applicability, particularly for small-scale datasets and resource-constrained environments. To address these challenges, we propose the multiscale multihead compact convolutional transformer (MSHCCT), a lightweight yet powerful model that integrates convolutional tokenization with small-scale ViTs to enhance multiscale feature representation while maintaining computational efficiency. Despite a modest increase in parameters and training time, MSHCCT achieves superior classification accuracy and robustness on high-resolution aerial scenes. Importantly, our approach eliminates the need for model pretraining, additional datasets, or multisensor data fusion, ensuring a computationally efficient and practical solution for remote sensing applications. The code will be made publicly available at <uri>https://github.com/aj1365/MSHCCT</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945957/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945957/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉变压器(ViTs)在遥感图像分类中越来越受欢迎,因为它能够有效地捕获远程依赖关系。然而,它们的高计算成本和内存占用限制了它们的适用性,特别是对于小规模数据集和资源受限的环境。为了应对这些挑战,我们提出了多尺度多头紧凑型卷积变压器(MSHCCT),这是一种轻量级但功能强大的模型,它将卷积标记化与小规模vit集成在一起,以增强多尺度特征表示,同时保持计算效率。尽管参数和训练时间略有增加,但MSHCCT在高分辨率航拍场景上取得了优异的分类精度和鲁棒性。重要的是,我们的方法消除了模型预训练、额外数据集或多传感器数据融合的需要,确保了遥感应用的计算效率和实用解决方案。该代码将在https://github.com/aj1365/MSHCCT上公开发布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSHCCT: A Multiscale Compact Convolutional Network for High-Resolution Aerial Scene Classification
The growing popularity of vision transformers (ViTs) in remote sensing image classification is due to their ability to effectively capture long-range dependencies. However, their high computational cost and memory footprint limit their applicability, particularly for small-scale datasets and resource-constrained environments. To address these challenges, we propose the multiscale multihead compact convolutional transformer (MSHCCT), a lightweight yet powerful model that integrates convolutional tokenization with small-scale ViTs to enhance multiscale feature representation while maintaining computational efficiency. Despite a modest increase in parameters and training time, MSHCCT achieves superior classification accuracy and robustness on high-resolution aerial scenes. Importantly, our approach eliminates the need for model pretraining, additional datasets, or multisensor data fusion, ensuring a computationally efficient and practical solution for remote sensing applications. The code will be made publicly available at https://github.com/aj1365/MSHCCT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信