{"title":"OneOS:用于边缘到云连续体的分布式操作系统","authors":"Kumseok Jung;Julien Gascon-Samson;Sathish Gopalakrishnan;Karthik Pattabiraman","doi":"10.1109/TPDS.2025.3557747","DOIUrl":null,"url":null,"abstract":"Application developers often need to employ a combination of software such as communication middleware and cloud-based services to deal with the challenges of heterogeneity and network dynamism in the edge-to-cloud continuum. Consequently, developers write extra glue code peripheral to the application’s core business logic, to provide interoperability between interacting software frameworks. Each software framework comes with its own framework-specific API, and as technology evolves, the developer must keep up with the changing APIs by updating the glue code in their application. Thus, framework-specific APIs hinder interoperability and cause technology fragmentation. We propose a design of a middleware-based distributed operating system (OS) called OneOS to realize a computing paradigm that alleviates such interoperability challenges. OneOS provides a single system image of the distributed computing platform, and transparently provides interoperability between software components through the standard POSIX API. Using OneOS’s domain-specific language, users can compose complex distributed applications from legacy POSIX programs. OneOS tolerates failures by adopting a distributed checkpoint-restore algorithm. We evaluate the performance of OneOS against an open-source IoT Platform, ThingsJS, using an IoT stream processing benchmark suite, and a video processing application. OneOS executes the programs about 3x faster than ThingsJS, reduces the code size by about 22%, and recovers the state of failed applications within 1 s upon detecting their failure.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 6","pages":"1175-1192"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OneOS: Distributed Operating System for the Edge-to-Cloud Continuum\",\"authors\":\"Kumseok Jung;Julien Gascon-Samson;Sathish Gopalakrishnan;Karthik Pattabiraman\",\"doi\":\"10.1109/TPDS.2025.3557747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application developers often need to employ a combination of software such as communication middleware and cloud-based services to deal with the challenges of heterogeneity and network dynamism in the edge-to-cloud continuum. Consequently, developers write extra glue code peripheral to the application’s core business logic, to provide interoperability between interacting software frameworks. Each software framework comes with its own framework-specific API, and as technology evolves, the developer must keep up with the changing APIs by updating the glue code in their application. Thus, framework-specific APIs hinder interoperability and cause technology fragmentation. We propose a design of a middleware-based distributed operating system (OS) called OneOS to realize a computing paradigm that alleviates such interoperability challenges. OneOS provides a single system image of the distributed computing platform, and transparently provides interoperability between software components through the standard POSIX API. Using OneOS’s domain-specific language, users can compose complex distributed applications from legacy POSIX programs. OneOS tolerates failures by adopting a distributed checkpoint-restore algorithm. We evaluate the performance of OneOS against an open-source IoT Platform, ThingsJS, using an IoT stream processing benchmark suite, and a video processing application. OneOS executes the programs about 3x faster than ThingsJS, reduces the code size by about 22%, and recovers the state of failed applications within 1 s upon detecting their failure.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 6\",\"pages\":\"1175-1192\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948382/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948382/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
OneOS: Distributed Operating System for the Edge-to-Cloud Continuum
Application developers often need to employ a combination of software such as communication middleware and cloud-based services to deal with the challenges of heterogeneity and network dynamism in the edge-to-cloud continuum. Consequently, developers write extra glue code peripheral to the application’s core business logic, to provide interoperability between interacting software frameworks. Each software framework comes with its own framework-specific API, and as technology evolves, the developer must keep up with the changing APIs by updating the glue code in their application. Thus, framework-specific APIs hinder interoperability and cause technology fragmentation. We propose a design of a middleware-based distributed operating system (OS) called OneOS to realize a computing paradigm that alleviates such interoperability challenges. OneOS provides a single system image of the distributed computing platform, and transparently provides interoperability between software components through the standard POSIX API. Using OneOS’s domain-specific language, users can compose complex distributed applications from legacy POSIX programs. OneOS tolerates failures by adopting a distributed checkpoint-restore algorithm. We evaluate the performance of OneOS against an open-source IoT Platform, ThingsJS, using an IoT stream processing benchmark suite, and a video processing application. OneOS executes the programs about 3x faster than ThingsJS, reduces the code size by about 22%, and recovers the state of failed applications within 1 s upon detecting their failure.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.