{"title":"DFU-E:边缘DSP和AI应用的数据流架构","authors":"Wenming Li;Zhihua Fan;Tianyu Liu;Zhen Wang;Haibin Wu;Meng Wu;Kunming Zhang;Yanhuan Liu;Ninghui Sun;Xiaochun Ye;Dongrui Fan","doi":"10.1109/TPDS.2025.3555329","DOIUrl":null,"url":null,"abstract":"Edge computing aims to enable swift, real-time data processing, analysis, and storage close to the data source. However, edge computing platforms are often constrained by limited processing power and efficiency. This paper presents DFU-E, a dataflow-based accelerator specifically designed to meet the demands of edge digital signal processing (DSP) and artificial intelligence (AI) applications. Our design addresses real-world requirements with three main innovations. First, to accommodate the diverse algorithms utilized at the edge, we propose a multi-layer dataflow mechanism capable of exploiting task-level, instruction block-level, instruction-level, and data-level parallelism. Second, we develop an edge dataflow architecture that includes a customized processing element (PE) array, memory, and on-chip network microarchitecture optimized for the multi-layer dataflow mechanism. Third, we design an edge dataflow software stack that enables automatic optimizations through operator fusion, dataflow graph mapping, and task scheduling. We utilize representative real-world DSP and AI applications for evaluation. Comparing with Nvidia's state-of-the-art edge computing processor, DFU-E achieves up to 1.42× geometric mean performance improvement and 1.27× energy efficiency improvement.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 6","pages":"1100-1114"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFU-E: A Dataflow Architecture for Edge DSP and AI Applications\",\"authors\":\"Wenming Li;Zhihua Fan;Tianyu Liu;Zhen Wang;Haibin Wu;Meng Wu;Kunming Zhang;Yanhuan Liu;Ninghui Sun;Xiaochun Ye;Dongrui Fan\",\"doi\":\"10.1109/TPDS.2025.3555329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing aims to enable swift, real-time data processing, analysis, and storage close to the data source. However, edge computing platforms are often constrained by limited processing power and efficiency. This paper presents DFU-E, a dataflow-based accelerator specifically designed to meet the demands of edge digital signal processing (DSP) and artificial intelligence (AI) applications. Our design addresses real-world requirements with three main innovations. First, to accommodate the diverse algorithms utilized at the edge, we propose a multi-layer dataflow mechanism capable of exploiting task-level, instruction block-level, instruction-level, and data-level parallelism. Second, we develop an edge dataflow architecture that includes a customized processing element (PE) array, memory, and on-chip network microarchitecture optimized for the multi-layer dataflow mechanism. Third, we design an edge dataflow software stack that enables automatic optimizations through operator fusion, dataflow graph mapping, and task scheduling. We utilize representative real-world DSP and AI applications for evaluation. Comparing with Nvidia's state-of-the-art edge computing processor, DFU-E achieves up to 1.42× geometric mean performance improvement and 1.27× energy efficiency improvement.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 6\",\"pages\":\"1100-1114\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10944490/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10944490/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
DFU-E: A Dataflow Architecture for Edge DSP and AI Applications
Edge computing aims to enable swift, real-time data processing, analysis, and storage close to the data source. However, edge computing platforms are often constrained by limited processing power and efficiency. This paper presents DFU-E, a dataflow-based accelerator specifically designed to meet the demands of edge digital signal processing (DSP) and artificial intelligence (AI) applications. Our design addresses real-world requirements with three main innovations. First, to accommodate the diverse algorithms utilized at the edge, we propose a multi-layer dataflow mechanism capable of exploiting task-level, instruction block-level, instruction-level, and data-level parallelism. Second, we develop an edge dataflow architecture that includes a customized processing element (PE) array, memory, and on-chip network microarchitecture optimized for the multi-layer dataflow mechanism. Third, we design an edge dataflow software stack that enables automatic optimizations through operator fusion, dataflow graph mapping, and task scheduling. We utilize representative real-world DSP and AI applications for evaluation. Comparing with Nvidia's state-of-the-art edge computing processor, DFU-E achieves up to 1.42× geometric mean performance improvement and 1.27× energy efficiency improvement.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.