随机深层材料网络作为非线性非均质材料随机均质化的有效替代物

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ling Wu, Ludovic Noels
{"title":"随机深层材料网络作为非线性非均质材料随机均质化的有效替代物","authors":"Ling Wu,&nbsp;Ludovic Noels","doi":"10.1016/j.cma.2025.117994","DOIUrl":null,"url":null,"abstract":"<div><div>The Interaction-Based Deep Material Network (IB-DMN) is reformulated to decouple the phase volume fraction from the topological parameters of the IB-DMN. Since the phase volume fraction is no longer influenced by the topological parameters, on the one hand the stochastic IB-DMN can predict the response of arbitrary phase volume fraction, and on the other hand the stochastic IB-DMN can be constructed by introducing uncertainties to the topological parameters of a reference IB-DMN, which is trained using data obtained from full-field linear elastic homogenisation, allowing to capture the variability resulting from the micro-structure organisation such as a phase clustering.</div><div>The non-linear predictions of the proposed stochastic IB-DMN are compared to those from Direct Numerical Simulation (DNS) on 2D Stochastic Volume Elements (SVEs) of unidirectional fibre-reinforced matrix composites in a finite-strain setting. The results from in-plane uni-axial stress and shear tests show that the proposed stochastic IB-DMN is capable of reproducing random non-linear responses with the same stochastic characteristics as the predictions of the DNS conducted on SVE realisations.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"441 ","pages":"Article 117994"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic deep material networks as efficient surrogates for stochastic homogenisation of non-linear heterogeneous materials\",\"authors\":\"Ling Wu,&nbsp;Ludovic Noels\",\"doi\":\"10.1016/j.cma.2025.117994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Interaction-Based Deep Material Network (IB-DMN) is reformulated to decouple the phase volume fraction from the topological parameters of the IB-DMN. Since the phase volume fraction is no longer influenced by the topological parameters, on the one hand the stochastic IB-DMN can predict the response of arbitrary phase volume fraction, and on the other hand the stochastic IB-DMN can be constructed by introducing uncertainties to the topological parameters of a reference IB-DMN, which is trained using data obtained from full-field linear elastic homogenisation, allowing to capture the variability resulting from the micro-structure organisation such as a phase clustering.</div><div>The non-linear predictions of the proposed stochastic IB-DMN are compared to those from Direct Numerical Simulation (DNS) on 2D Stochastic Volume Elements (SVEs) of unidirectional fibre-reinforced matrix composites in a finite-strain setting. The results from in-plane uni-axial stress and shear tests show that the proposed stochastic IB-DMN is capable of reproducing random non-linear responses with the same stochastic characteristics as the predictions of the DNS conducted on SVE realisations.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"441 \",\"pages\":\"Article 117994\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004578252500266X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500266X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

重新制定了基于相互作用的深度材料网络(IB-DMN),以将相体积分数与IB-DMN的拓扑参数解耦。由于相体积分数不再受拓扑参数的影响,随机IB-DMN一方面可以预测任意相体积分数的响应,另一方面可以通过在参考IB-DMN的拓扑参数中引入不确定性来构建随机IB-DMN,该参考IB-DMN使用从全场线性弹性均匀化中获得的数据进行训练。允许捕获由微观结构组织(如相位聚类)引起的可变性。将所提出的随机IB-DMN的非线性预测结果与直接数值模拟(DNS)在有限应变条件下单向纤维增强基复合材料二维随机体积元(SVEs)上的预测结果进行了比较。平面内单轴应力和剪切试验结果表明,所提出的随机IB-DMN能够再现随机非线性响应,其随机特征与在SVE实现上进行的DNS预测相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic deep material networks as efficient surrogates for stochastic homogenisation of non-linear heterogeneous materials
The Interaction-Based Deep Material Network (IB-DMN) is reformulated to decouple the phase volume fraction from the topological parameters of the IB-DMN. Since the phase volume fraction is no longer influenced by the topological parameters, on the one hand the stochastic IB-DMN can predict the response of arbitrary phase volume fraction, and on the other hand the stochastic IB-DMN can be constructed by introducing uncertainties to the topological parameters of a reference IB-DMN, which is trained using data obtained from full-field linear elastic homogenisation, allowing to capture the variability resulting from the micro-structure organisation such as a phase clustering.
The non-linear predictions of the proposed stochastic IB-DMN are compared to those from Direct Numerical Simulation (DNS) on 2D Stochastic Volume Elements (SVEs) of unidirectional fibre-reinforced matrix composites in a finite-strain setting. The results from in-plane uni-axial stress and shear tests show that the proposed stochastic IB-DMN is capable of reproducing random non-linear responses with the same stochastic characteristics as the predictions of the DNS conducted on SVE realisations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信