{"title":"随机深层材料网络作为非线性非均质材料随机均质化的有效替代物","authors":"Ling Wu, Ludovic Noels","doi":"10.1016/j.cma.2025.117994","DOIUrl":null,"url":null,"abstract":"<div><div>The Interaction-Based Deep Material Network (IB-DMN) is reformulated to decouple the phase volume fraction from the topological parameters of the IB-DMN. Since the phase volume fraction is no longer influenced by the topological parameters, on the one hand the stochastic IB-DMN can predict the response of arbitrary phase volume fraction, and on the other hand the stochastic IB-DMN can be constructed by introducing uncertainties to the topological parameters of a reference IB-DMN, which is trained using data obtained from full-field linear elastic homogenisation, allowing to capture the variability resulting from the micro-structure organisation such as a phase clustering.</div><div>The non-linear predictions of the proposed stochastic IB-DMN are compared to those from Direct Numerical Simulation (DNS) on 2D Stochastic Volume Elements (SVEs) of unidirectional fibre-reinforced matrix composites in a finite-strain setting. The results from in-plane uni-axial stress and shear tests show that the proposed stochastic IB-DMN is capable of reproducing random non-linear responses with the same stochastic characteristics as the predictions of the DNS conducted on SVE realisations.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"441 ","pages":"Article 117994"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic deep material networks as efficient surrogates for stochastic homogenisation of non-linear heterogeneous materials\",\"authors\":\"Ling Wu, Ludovic Noels\",\"doi\":\"10.1016/j.cma.2025.117994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Interaction-Based Deep Material Network (IB-DMN) is reformulated to decouple the phase volume fraction from the topological parameters of the IB-DMN. Since the phase volume fraction is no longer influenced by the topological parameters, on the one hand the stochastic IB-DMN can predict the response of arbitrary phase volume fraction, and on the other hand the stochastic IB-DMN can be constructed by introducing uncertainties to the topological parameters of a reference IB-DMN, which is trained using data obtained from full-field linear elastic homogenisation, allowing to capture the variability resulting from the micro-structure organisation such as a phase clustering.</div><div>The non-linear predictions of the proposed stochastic IB-DMN are compared to those from Direct Numerical Simulation (DNS) on 2D Stochastic Volume Elements (SVEs) of unidirectional fibre-reinforced matrix composites in a finite-strain setting. The results from in-plane uni-axial stress and shear tests show that the proposed stochastic IB-DMN is capable of reproducing random non-linear responses with the same stochastic characteristics as the predictions of the DNS conducted on SVE realisations.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"441 \",\"pages\":\"Article 117994\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004578252500266X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500266X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Stochastic deep material networks as efficient surrogates for stochastic homogenisation of non-linear heterogeneous materials
The Interaction-Based Deep Material Network (IB-DMN) is reformulated to decouple the phase volume fraction from the topological parameters of the IB-DMN. Since the phase volume fraction is no longer influenced by the topological parameters, on the one hand the stochastic IB-DMN can predict the response of arbitrary phase volume fraction, and on the other hand the stochastic IB-DMN can be constructed by introducing uncertainties to the topological parameters of a reference IB-DMN, which is trained using data obtained from full-field linear elastic homogenisation, allowing to capture the variability resulting from the micro-structure organisation such as a phase clustering.
The non-linear predictions of the proposed stochastic IB-DMN are compared to those from Direct Numerical Simulation (DNS) on 2D Stochastic Volume Elements (SVEs) of unidirectional fibre-reinforced matrix composites in a finite-strain setting. The results from in-plane uni-axial stress and shear tests show that the proposed stochastic IB-DMN is capable of reproducing random non-linear responses with the same stochastic characteristics as the predictions of the DNS conducted on SVE realisations.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.