Walter M. Warren-Vega , Sofia Cornejo-León , Ana I. Zárate-Guzmán , Francisco Carrasco-Marín , Luis A. Romero-Cano
{"title":"水溶液中Cu(II)在功能化材料上吸附机理的化学计量学建模:集成人工神经网络和多孔结构表征","authors":"Walter M. Warren-Vega , Sofia Cornejo-León , Ana I. Zárate-Guzmán , Francisco Carrasco-Marín , Luis A. Romero-Cano","doi":"10.1016/j.chemolab.2025.105405","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional methods for evaluating adsorption mechanisms rely on material characterization and its linear relationship with adsorption capacity. However, this approach has limitations, as it assumes a linear correlation, and when this fails, it is often speculated that multiple mechanisms are involved without detailing their contributions. This study overcomes these challenges by using artificial intelligence to analyze the adsorption of Cu(II) onto alternative adsorbents. An Artificial Neural Network (ANN) combined with 3D porous texture simulations, based on mercury intrusion porosimetry, established non-linear correlations among 13 textural and chemical characteristics and adsorption capacity.</div><div>The material with the highest adsorption capacity (107 mg g<sup>−1</sup>) featured an accessible porous texture rich in –COOH groups. The ANN quantified the contributions of two governing mechanisms: diffusion through the porous texture (67.07 %) and interaction with –COOH sites (32.93 %). Chemometric analysis revealed that the greatest weight in the ANN model was attributed to the average pore diameter (17.11 %), which was consistent with the characterization of the saturated material by SEM-EDX, showing that adsorption occurs primarily in the exposed cavities of the material.</div><div>The adsorption mechanism proposed by the ANN study explains the atypical points observed in the different materials, showing that the adsorption process is governed by a combination of two mechanisms: one associated with the porous texture and the other with surface chemistry. The findings provide a deeper understanding of the key variables influencing adsorption and offer guidance for optimizing material synthesis.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"262 ","pages":"Article 105405"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemometric modeling of the adsorption mechanism of Cu(II) in aqueous solution onto functionalized materials: Integrating artificial neural networks and porous structure characterization\",\"authors\":\"Walter M. Warren-Vega , Sofia Cornejo-León , Ana I. Zárate-Guzmán , Francisco Carrasco-Marín , Luis A. Romero-Cano\",\"doi\":\"10.1016/j.chemolab.2025.105405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional methods for evaluating adsorption mechanisms rely on material characterization and its linear relationship with adsorption capacity. However, this approach has limitations, as it assumes a linear correlation, and when this fails, it is often speculated that multiple mechanisms are involved without detailing their contributions. This study overcomes these challenges by using artificial intelligence to analyze the adsorption of Cu(II) onto alternative adsorbents. An Artificial Neural Network (ANN) combined with 3D porous texture simulations, based on mercury intrusion porosimetry, established non-linear correlations among 13 textural and chemical characteristics and adsorption capacity.</div><div>The material with the highest adsorption capacity (107 mg g<sup>−1</sup>) featured an accessible porous texture rich in –COOH groups. The ANN quantified the contributions of two governing mechanisms: diffusion through the porous texture (67.07 %) and interaction with –COOH sites (32.93 %). Chemometric analysis revealed that the greatest weight in the ANN model was attributed to the average pore diameter (17.11 %), which was consistent with the characterization of the saturated material by SEM-EDX, showing that adsorption occurs primarily in the exposed cavities of the material.</div><div>The adsorption mechanism proposed by the ANN study explains the atypical points observed in the different materials, showing that the adsorption process is governed by a combination of two mechanisms: one associated with the porous texture and the other with surface chemistry. The findings provide a deeper understanding of the key variables influencing adsorption and offer guidance for optimizing material synthesis.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"262 \",\"pages\":\"Article 105405\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743925000905\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000905","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Chemometric modeling of the adsorption mechanism of Cu(II) in aqueous solution onto functionalized materials: Integrating artificial neural networks and porous structure characterization
Traditional methods for evaluating adsorption mechanisms rely on material characterization and its linear relationship with adsorption capacity. However, this approach has limitations, as it assumes a linear correlation, and when this fails, it is often speculated that multiple mechanisms are involved without detailing their contributions. This study overcomes these challenges by using artificial intelligence to analyze the adsorption of Cu(II) onto alternative adsorbents. An Artificial Neural Network (ANN) combined with 3D porous texture simulations, based on mercury intrusion porosimetry, established non-linear correlations among 13 textural and chemical characteristics and adsorption capacity.
The material with the highest adsorption capacity (107 mg g−1) featured an accessible porous texture rich in –COOH groups. The ANN quantified the contributions of two governing mechanisms: diffusion through the porous texture (67.07 %) and interaction with –COOH sites (32.93 %). Chemometric analysis revealed that the greatest weight in the ANN model was attributed to the average pore diameter (17.11 %), which was consistent with the characterization of the saturated material by SEM-EDX, showing that adsorption occurs primarily in the exposed cavities of the material.
The adsorption mechanism proposed by the ANN study explains the atypical points observed in the different materials, showing that the adsorption process is governed by a combination of two mechanisms: one associated with the porous texture and the other with surface chemistry. The findings provide a deeper understanding of the key variables influencing adsorption and offer guidance for optimizing material synthesis.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.