Peng Wang , Xuewei Song , Jinlong Qiu , Xiyan Zhu , Pengfei Wu , Zhikang Liao , Jingru Xie , Nan Wang , Hui Zhao
{"title":"雄性大鼠颅顶颞叶撞击致闭合性颅脑损伤急性期行为和病理反应的比较研究","authors":"Peng Wang , Xuewei Song , Jinlong Qiu , Xiyan Zhu , Pengfei Wu , Zhikang Liao , Jingru Xie , Nan Wang , Hui Zhao","doi":"10.1016/j.expneurol.2025.115259","DOIUrl":null,"url":null,"abstract":"<div><div>The outcomes of traumatic brain injury (TBI) are closely linked to the strength of mechanical loads applied to the head. However, the same mechanical load can lead to significant variations in injury outcomes depending on the location of impact. To compare the acute-phase behavioral and pathological effects of different impact locations on TBI outcomes, we conducted a closed head injury experimental study using male rats subjected to cranial vertex and temporal lobe impacts. The rats were injured by an impactor according to the experimental protocol established using the L<sub>4</sub> (2<sup>3</sup>) orthogonal table, and the behavioral and pathological outcomes were assessed. The contribution rates of impact location and strength to TBI were quantified using Analysis of Variance. The results indicated that impact strength played a dominant role in TBI and showed a positive correlation, while the role of impact location in TBI cannot be ignored. Behaviorally, cranial vertex impacts led to more severe coma, motor, memory, and anxiety deficits. Pathologically, cranial vertex impacts caused more severe diffuse axonal injury in the corpus callosum and brainstem. In the left hippocampus and amygdala, cell loss due to cranial vertex impacts was more pronounced than that caused by temporal lobe impacts, whereas the opposite was true on the right side. Notably, the pathological changes observed in the left (non-impact) hippocampus and amygdala due to temporal lobe impacts showed a stronger linear correlation with behavioral outcomes, suggesting that damage to the left side has greater predictive power for behavioral deficits. This suggests that the impact location is an important factor affecting TBI and should be considered in the study.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"389 ","pages":"Article 115259"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on the acute-phase behavioral and pathological responses of closed head injury induced by cranial vertex and temporal lobe impacts in male rats\",\"authors\":\"Peng Wang , Xuewei Song , Jinlong Qiu , Xiyan Zhu , Pengfei Wu , Zhikang Liao , Jingru Xie , Nan Wang , Hui Zhao\",\"doi\":\"10.1016/j.expneurol.2025.115259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The outcomes of traumatic brain injury (TBI) are closely linked to the strength of mechanical loads applied to the head. However, the same mechanical load can lead to significant variations in injury outcomes depending on the location of impact. To compare the acute-phase behavioral and pathological effects of different impact locations on TBI outcomes, we conducted a closed head injury experimental study using male rats subjected to cranial vertex and temporal lobe impacts. The rats were injured by an impactor according to the experimental protocol established using the L<sub>4</sub> (2<sup>3</sup>) orthogonal table, and the behavioral and pathological outcomes were assessed. The contribution rates of impact location and strength to TBI were quantified using Analysis of Variance. The results indicated that impact strength played a dominant role in TBI and showed a positive correlation, while the role of impact location in TBI cannot be ignored. Behaviorally, cranial vertex impacts led to more severe coma, motor, memory, and anxiety deficits. Pathologically, cranial vertex impacts caused more severe diffuse axonal injury in the corpus callosum and brainstem. In the left hippocampus and amygdala, cell loss due to cranial vertex impacts was more pronounced than that caused by temporal lobe impacts, whereas the opposite was true on the right side. Notably, the pathological changes observed in the left (non-impact) hippocampus and amygdala due to temporal lobe impacts showed a stronger linear correlation with behavioral outcomes, suggesting that damage to the left side has greater predictive power for behavioral deficits. This suggests that the impact location is an important factor affecting TBI and should be considered in the study.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"389 \",\"pages\":\"Article 115259\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488625001232\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625001232","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A comparative study on the acute-phase behavioral and pathological responses of closed head injury induced by cranial vertex and temporal lobe impacts in male rats
The outcomes of traumatic brain injury (TBI) are closely linked to the strength of mechanical loads applied to the head. However, the same mechanical load can lead to significant variations in injury outcomes depending on the location of impact. To compare the acute-phase behavioral and pathological effects of different impact locations on TBI outcomes, we conducted a closed head injury experimental study using male rats subjected to cranial vertex and temporal lobe impacts. The rats were injured by an impactor according to the experimental protocol established using the L4 (23) orthogonal table, and the behavioral and pathological outcomes were assessed. The contribution rates of impact location and strength to TBI were quantified using Analysis of Variance. The results indicated that impact strength played a dominant role in TBI and showed a positive correlation, while the role of impact location in TBI cannot be ignored. Behaviorally, cranial vertex impacts led to more severe coma, motor, memory, and anxiety deficits. Pathologically, cranial vertex impacts caused more severe diffuse axonal injury in the corpus callosum and brainstem. In the left hippocampus and amygdala, cell loss due to cranial vertex impacts was more pronounced than that caused by temporal lobe impacts, whereas the opposite was true on the right side. Notably, the pathological changes observed in the left (non-impact) hippocampus and amygdala due to temporal lobe impacts showed a stronger linear correlation with behavioral outcomes, suggesting that damage to the left side has greater predictive power for behavioral deficits. This suggests that the impact location is an important factor affecting TBI and should be considered in the study.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.