{"title":"抗癌药物丹尼魁酮的后期功能化及其衍生物的体外抗癌活性","authors":"Geshuyi Chen , Yechun Zeng , Xin Chen , Zhe Chang , Pei Yuan , Haijia Chen , Yongxiu Yang , Xiaolei Liang , Kun Yue , Depeng Zhao","doi":"10.1016/j.ejmcr.2025.100269","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrogen heterocycles play an important role in drugs and natural products. C-H late-stage functionalization (LSF) of N-heterocycles might provide a direct route to construct diversified analogues with potential pharmaceutical activities. Here, we employed a Cu-catalyzed C–H LSF to modify an anticancer drug Daniquidone and successfully converted the N-α position C–H bond into C–O, C–C and C–S bonds. Anticancer activities of all modified compounds <em>in vitro</em> were measured against three cell lines. The results showed that compound <strong>2i</strong> was the most active compound among all derivatives synthesized (IC<sub>50</sub> = 2.14 ± 1.23 μM against OVCAR-3, IC<sub>50</sub> = 4.07 ± 1.09 μM against A2780), <strong>1b</strong>, <strong>1g</strong> and <strong>2j</strong> also exhibit increased activity compared to the parent drug Daniquidone. Besides, molecular docking simulations with <strong>1b</strong>, <strong>1g</strong> and <strong>2j</strong> were conducted to further understand their binding modes.</div></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"14 ","pages":"Article 100269"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late-stage functionalization of anticancer agent Daniquidone and the in vitro anticancer activities of the derivatives\",\"authors\":\"Geshuyi Chen , Yechun Zeng , Xin Chen , Zhe Chang , Pei Yuan , Haijia Chen , Yongxiu Yang , Xiaolei Liang , Kun Yue , Depeng Zhao\",\"doi\":\"10.1016/j.ejmcr.2025.100269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nitrogen heterocycles play an important role in drugs and natural products. C-H late-stage functionalization (LSF) of N-heterocycles might provide a direct route to construct diversified analogues with potential pharmaceutical activities. Here, we employed a Cu-catalyzed C–H LSF to modify an anticancer drug Daniquidone and successfully converted the N-α position C–H bond into C–O, C–C and C–S bonds. Anticancer activities of all modified compounds <em>in vitro</em> were measured against three cell lines. The results showed that compound <strong>2i</strong> was the most active compound among all derivatives synthesized (IC<sub>50</sub> = 2.14 ± 1.23 μM against OVCAR-3, IC<sub>50</sub> = 4.07 ± 1.09 μM against A2780), <strong>1b</strong>, <strong>1g</strong> and <strong>2j</strong> also exhibit increased activity compared to the parent drug Daniquidone. Besides, molecular docking simulations with <strong>1b</strong>, <strong>1g</strong> and <strong>2j</strong> were conducted to further understand their binding modes.</div></div>\",\"PeriodicalId\":12015,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry Reports\",\"volume\":\"14 \",\"pages\":\"Article 100269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772417425000251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772417425000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Late-stage functionalization of anticancer agent Daniquidone and the in vitro anticancer activities of the derivatives
Nitrogen heterocycles play an important role in drugs and natural products. C-H late-stage functionalization (LSF) of N-heterocycles might provide a direct route to construct diversified analogues with potential pharmaceutical activities. Here, we employed a Cu-catalyzed C–H LSF to modify an anticancer drug Daniquidone and successfully converted the N-α position C–H bond into C–O, C–C and C–S bonds. Anticancer activities of all modified compounds in vitro were measured against three cell lines. The results showed that compound 2i was the most active compound among all derivatives synthesized (IC50 = 2.14 ± 1.23 μM against OVCAR-3, IC50 = 4.07 ± 1.09 μM against A2780), 1b, 1g and 2j also exhibit increased activity compared to the parent drug Daniquidone. Besides, molecular docking simulations with 1b, 1g and 2j were conducted to further understand their binding modes.