用递归算子构造完备非局部对称的z阶李代数

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Jiřina Jahnová, Petr Vojčák
{"title":"用递归算子构造完备非局部对称的z阶李代数","authors":"Jiřina Jahnová,&nbsp;Petr Vojčák","doi":"10.1016/j.physd.2025.134658","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the reduced quasi-classical self-dual Yang–Mills equation (rYME) and two recently found (Jahnová and Vojčák, 2024) invertible recursion operators <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> for its full-fledged (in a given differential covering) nonlocal symmetries. We introduce a <span><math><mi>Z</mi></math></span>-grading on the Lie algebra <span><math><mrow><msubsup><mrow><mi>sym</mi></mrow><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>τ</mi></mrow><mrow><mi>W</mi></mrow></msup></mrow></msubsup><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> of all nonlocal Laurent polynomial symmetries of the rYME and prove that both the operators <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> are <span><math><mi>Z</mi></math></span>-graded automorphisms of the underlying vector space on the set <span><math><mrow><msubsup><mrow><mi>sym</mi></mrow><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>τ</mi></mrow><mrow><mi>W</mi></mrow></msup></mrow></msubsup><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. This <em>inter alia</em> implies that all its vector subspaces formed by all homogeneous elements of a given fixed degree (i.e. a weight in the context below) are mutually isomorphic, and thus each of them can be uniquely reconstructed from the vector space of all homogeneous symmetries of the zero degree. To the best of our knowledge, such a result is unparalleled in the current body of literature. The obtained results are used for the construction of a Lie subalgebra <span><math><mi>V</mi></math></span> of <span><math><mrow><msubsup><mrow><mi>sym</mi></mrow><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>τ</mi></mrow><mrow><mi>W</mi></mrow></msup></mrow></msubsup><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> which contains all known to us nonlocal Laurent polynomial symmetries of the rYME. The Lie algebra <span><math><mi>V</mi></math></span> is subsequently described as the linear span of the orbits of a set of selected zero-weight symmetries — we refer to them as to the seed generators of <span><math><mi>V</mi></math></span>. Further, we study the hierarchies of symmetries related to the seed generators under the action of the group of recursion operators generated by <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>. Finally, the linear dependence/independence of the (sub)set of generators of <span><math><mi>V</mi></math></span> is discussed.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134658"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A straightforward construction of Z-graded Lie algebras of full-fledged nonlocal symmetries via recursion operators\",\"authors\":\"Jiřina Jahnová,&nbsp;Petr Vojčák\",\"doi\":\"10.1016/j.physd.2025.134658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the reduced quasi-classical self-dual Yang–Mills equation (rYME) and two recently found (Jahnová and Vojčák, 2024) invertible recursion operators <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> for its full-fledged (in a given differential covering) nonlocal symmetries. We introduce a <span><math><mi>Z</mi></math></span>-grading on the Lie algebra <span><math><mrow><msubsup><mrow><mi>sym</mi></mrow><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>τ</mi></mrow><mrow><mi>W</mi></mrow></msup></mrow></msubsup><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> of all nonlocal Laurent polynomial symmetries of the rYME and prove that both the operators <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> are <span><math><mi>Z</mi></math></span>-graded automorphisms of the underlying vector space on the set <span><math><mrow><msubsup><mrow><mi>sym</mi></mrow><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>τ</mi></mrow><mrow><mi>W</mi></mrow></msup></mrow></msubsup><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. This <em>inter alia</em> implies that all its vector subspaces formed by all homogeneous elements of a given fixed degree (i.e. a weight in the context below) are mutually isomorphic, and thus each of them can be uniquely reconstructed from the vector space of all homogeneous symmetries of the zero degree. To the best of our knowledge, such a result is unparalleled in the current body of literature. The obtained results are used for the construction of a Lie subalgebra <span><math><mi>V</mi></math></span> of <span><math><mrow><msubsup><mrow><mi>sym</mi></mrow><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>τ</mi></mrow><mrow><mi>W</mi></mrow></msup></mrow></msubsup><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> which contains all known to us nonlocal Laurent polynomial symmetries of the rYME. The Lie algebra <span><math><mi>V</mi></math></span> is subsequently described as the linear span of the orbits of a set of selected zero-weight symmetries — we refer to them as to the seed generators of <span><math><mi>V</mi></math></span>. Further, we study the hierarchies of symmetries related to the seed generators under the action of the group of recursion operators generated by <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>. Finally, the linear dependence/independence of the (sub)set of generators of <span><math><mi>V</mi></math></span> is discussed.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134658\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892500137X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892500137X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑简化的准经典自对偶Yang-Mills方程(rYME)和两个最近发现的(jahnov和Vojčák, 2024)可逆递归算子Rq和Rm对于其完全非局部对称性(在给定的微分覆盖下)。我们在rYME的所有非局部Laurent多项式对称的Lie代数symLτW(E)上引入了一个z -分级,并证明了算子Rq和Rm都是底层向量空间在集合symLτW(E)上的z -分级自同构。这意味着它的所有向量子空间都是由给定固定度的所有齐次元素(即下面的权重)形成的,它们是相互同构的,因此它们中的每一个都可以唯一地从零度的所有齐次对称的向量空间中重构出来。据我们所知,这样的结果在目前的文学中是无与伦比的。所得到的结果用于构造一个包含已知的rYME的所有非局部Laurent多项式对称的symLτW(E)的Lie子代数V。李代数V随后被描述为一组选定的零权对称的轨道的线性张成——我们将它们称为V的种子发生器。进一步,我们研究了在由Rq和Rm生成的递归算子群作用下与种子发生器相关的对称的层次。最后,讨论了V的发生器(子)集的线性相关/无关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A straightforward construction of Z-graded Lie algebras of full-fledged nonlocal symmetries via recursion operators
We consider the reduced quasi-classical self-dual Yang–Mills equation (rYME) and two recently found (Jahnová and Vojčák, 2024) invertible recursion operators Rq and Rm for its full-fledged (in a given differential covering) nonlocal symmetries. We introduce a Z-grading on the Lie algebra symLτW(E) of all nonlocal Laurent polynomial symmetries of the rYME and prove that both the operators Rq and Rm are Z-graded automorphisms of the underlying vector space on the set symLτW(E). This inter alia implies that all its vector subspaces formed by all homogeneous elements of a given fixed degree (i.e. a weight in the context below) are mutually isomorphic, and thus each of them can be uniquely reconstructed from the vector space of all homogeneous symmetries of the zero degree. To the best of our knowledge, such a result is unparalleled in the current body of literature. The obtained results are used for the construction of a Lie subalgebra V of symLτW(E) which contains all known to us nonlocal Laurent polynomial symmetries of the rYME. The Lie algebra V is subsequently described as the linear span of the orbits of a set of selected zero-weight symmetries — we refer to them as to the seed generators of V. Further, we study the hierarchies of symmetries related to the seed generators under the action of the group of recursion operators generated by Rq and Rm. Finally, the linear dependence/independence of the (sub)set of generators of V is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信