{"title":"关于Riemann-Liouville型算子,Wiener空间上的有界平均振荡,梯度估计和逼近","authors":"Stefan Geiss , Nguyen Tran Thuan","doi":"10.1016/j.spa.2025.104651","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"187 ","pages":"Article 104651"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Riemann–Liouville type operators, bounded mean oscillation, gradient estimates and approximation on the Wiener space\",\"authors\":\"Stefan Geiss , Nguyen Tran Thuan\",\"doi\":\"10.1016/j.spa.2025.104651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"187 \",\"pages\":\"Article 104651\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000924\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000924","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On Riemann–Liouville type operators, bounded mean oscillation, gradient estimates and approximation on the Wiener space
We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.