关于Riemann-Liouville型算子,Wiener空间上的有界平均振荡,梯度估计和逼近

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Stefan Geiss , Nguyen Tran Thuan
{"title":"关于Riemann-Liouville型算子,Wiener空间上的有界平均振荡,梯度估计和逼近","authors":"Stefan Geiss ,&nbsp;Nguyen Tran Thuan","doi":"10.1016/j.spa.2025.104651","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"187 ","pages":"Article 104651"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Riemann–Liouville type operators, bounded mean oscillation, gradient estimates and approximation on the Wiener space\",\"authors\":\"Stefan Geiss ,&nbsp;Nguyen Tran Thuan\",\"doi\":\"10.1016/j.spa.2025.104651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"187 \",\"pages\":\"Article 104651\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925000924\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000924","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们在随机框架中讨论了应用于随机过程的Riemann-Liouville型算子、有界平均振荡、实插值和近似之间的相互作用。特别地,我们利用费曼-卡茨理论研究了抛物型偏微分方程在Wiener空间上的梯度过程的奇异性。在分数阶积分梯度上用bmo-条件测量奇异性。作为一个应用,我们处理了Wiener空间上随机积分的近似问题。特别地,我们提供了一种二元期权的离散时间套期保值策略,该策略在短缺约束下对套期保值误差有统一的局部控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Riemann–Liouville type operators, bounded mean oscillation, gradient estimates and approximation on the Wiener space
We discuss in a stochastic framework the interplay between Riemann–Liouville type operators applied to stochastic processes, bounded mean oscillation, real interpolation, and approximation. In particular, we investigate the singularity of gradient processes on the Wiener space arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in terms of bmo-conditions on the fractional integrated gradient. As an application we treat an approximation problem for stochastic integrals on the Wiener space. In particular, we provide a discrete time hedging strategy for the binary option with a uniform local control of the hedging error under a shortfall constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信