Fangwen Zhou , Rick Parrish , Muhammad Afzal , Ashirbani Saha , R. Brian Haynes , Alfonso Iorio , Cynthia Lokker
{"title":"对特定领域的预训练语言模型进行基准测试,以确定临床研究中方法严谨性的最佳模型","authors":"Fangwen Zhou , Rick Parrish , Muhammad Afzal , Ashirbani Saha , R. Brian Haynes , Alfonso Iorio , Cynthia Lokker","doi":"10.1016/j.jbi.2025.104825","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Encoder-only transformer-based language models have shown promise in automating critical appraisal of clinical literature. However, a comprehensive evaluation of the models for classifying the methodological rigor of randomized controlled trials is necessary to identify the more robust ones. This study benchmarks several state-of-the-art transformer-based language models using a diverse set of performance metrics.</div></div><div><h3>Methods</h3><div>Seven transformer-based language models were fine-tuned on the title and abstract of 42,575 articles from 2003 to 2023 in McMaster University’s Premium LiteratUre Service database under different configurations. The studies reported in the articles addressed questions related to treatment, prevention, or quality improvement for which randomized controlled trials are the gold standard with defined criteria for rigorous methods. Models were evaluated on the validation set using 12 schemes and metrics, including optimization for cross-entropy loss, Brier score, AUROC, average precision, sensitivity, specificity, and accuracy, among others. Threshold tuning was performed to optimize threshold-dependent metrics. Models that achieved the best performance in one or more schemes on the validation set were further tested in hold-out and external datasets.</div></div><div><h3>Results</h3><div>A total of 210 models were fine-tuned. Six models achieved top performance in one or more evaluation schemes. Three BioLinkBERT models outperformed others on 8 of the 12 schemes. BioBERT, BiomedBERT, and SciBERT were best on 1, 1 and 2 schemes, respectively. While model performance remained robust on the hold-out test set, it declined in external datasets. Class weight adjustments improved performance in most instances.</div></div><div><h3>Conclusion</h3><div>BioLinkBERT generally outperformed the other models. Using comprehensive evaluation metrics and threshold tuning optimizes model selection for real-world applications. Future work should assess generalizability to other datasets, explore alternate imbalance strategies, and examine training on full-text articles.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"166 ","pages":"Article 104825"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking domain-specific pretrained language models to identify the best model for methodological rigor in clinical studies\",\"authors\":\"Fangwen Zhou , Rick Parrish , Muhammad Afzal , Ashirbani Saha , R. Brian Haynes , Alfonso Iorio , Cynthia Lokker\",\"doi\":\"10.1016/j.jbi.2025.104825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Encoder-only transformer-based language models have shown promise in automating critical appraisal of clinical literature. However, a comprehensive evaluation of the models for classifying the methodological rigor of randomized controlled trials is necessary to identify the more robust ones. This study benchmarks several state-of-the-art transformer-based language models using a diverse set of performance metrics.</div></div><div><h3>Methods</h3><div>Seven transformer-based language models were fine-tuned on the title and abstract of 42,575 articles from 2003 to 2023 in McMaster University’s Premium LiteratUre Service database under different configurations. The studies reported in the articles addressed questions related to treatment, prevention, or quality improvement for which randomized controlled trials are the gold standard with defined criteria for rigorous methods. Models were evaluated on the validation set using 12 schemes and metrics, including optimization for cross-entropy loss, Brier score, AUROC, average precision, sensitivity, specificity, and accuracy, among others. Threshold tuning was performed to optimize threshold-dependent metrics. Models that achieved the best performance in one or more schemes on the validation set were further tested in hold-out and external datasets.</div></div><div><h3>Results</h3><div>A total of 210 models were fine-tuned. Six models achieved top performance in one or more evaluation schemes. Three BioLinkBERT models outperformed others on 8 of the 12 schemes. BioBERT, BiomedBERT, and SciBERT were best on 1, 1 and 2 schemes, respectively. While model performance remained robust on the hold-out test set, it declined in external datasets. Class weight adjustments improved performance in most instances.</div></div><div><h3>Conclusion</h3><div>BioLinkBERT generally outperformed the other models. Using comprehensive evaluation metrics and threshold tuning optimizes model selection for real-world applications. Future work should assess generalizability to other datasets, explore alternate imbalance strategies, and examine training on full-text articles.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"166 \",\"pages\":\"Article 104825\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000541\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Benchmarking domain-specific pretrained language models to identify the best model for methodological rigor in clinical studies
Objective
Encoder-only transformer-based language models have shown promise in automating critical appraisal of clinical literature. However, a comprehensive evaluation of the models for classifying the methodological rigor of randomized controlled trials is necessary to identify the more robust ones. This study benchmarks several state-of-the-art transformer-based language models using a diverse set of performance metrics.
Methods
Seven transformer-based language models were fine-tuned on the title and abstract of 42,575 articles from 2003 to 2023 in McMaster University’s Premium LiteratUre Service database under different configurations. The studies reported in the articles addressed questions related to treatment, prevention, or quality improvement for which randomized controlled trials are the gold standard with defined criteria for rigorous methods. Models were evaluated on the validation set using 12 schemes and metrics, including optimization for cross-entropy loss, Brier score, AUROC, average precision, sensitivity, specificity, and accuracy, among others. Threshold tuning was performed to optimize threshold-dependent metrics. Models that achieved the best performance in one or more schemes on the validation set were further tested in hold-out and external datasets.
Results
A total of 210 models were fine-tuned. Six models achieved top performance in one or more evaluation schemes. Three BioLinkBERT models outperformed others on 8 of the 12 schemes. BioBERT, BiomedBERT, and SciBERT were best on 1, 1 and 2 schemes, respectively. While model performance remained robust on the hold-out test set, it declined in external datasets. Class weight adjustments improved performance in most instances.
Conclusion
BioLinkBERT generally outperformed the other models. Using comprehensive evaluation metrics and threshold tuning optimizes model selection for real-world applications. Future work should assess generalizability to other datasets, explore alternate imbalance strategies, and examine training on full-text articles.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.