Abel Corrêa Dias, Viviane Pereira Moreira, João Luiz Dihl Comba
{"title":"RoBIn:基于变压器的机器阅读理解偏差风险推理模型","authors":"Abel Corrêa Dias, Viviane Pereira Moreira, João Luiz Dihl Comba","doi":"10.1016/j.jbi.2025.104819","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>Scientific publications are essential for uncovering insights, testing new drugs, and informing healthcare policies. Evaluating the quality of these publications often involves assessing their Risk of Bias (RoB), a task traditionally performed by human reviewers. The goal of this work is to create a dataset and develop models that allow automated RoB assessment in clinical trials.</div></div><div><h3>Methods:</h3><div>We use data from the Cochrane Database of Systematic Reviews (CDSR) as ground truth to label open-access clinical trial publications from PubMed. This process enabled us to develop training and test datasets specifically for machine reading comprehension and RoB inference. Additionally, we created extractive (RoBIn<sup>Ext</sup>) and generative (RoBIn<sup>Gen</sup>) Transformer-based approaches to extract relevant evidence and classify the RoB effectively.</div></div><div><h3>Results:</h3><div>RoBIn was evaluated across various settings and benchmarked against state-of-the-art methods, including large language models (LLMs). In most cases, the best-performing RoBIn variant surpasses traditional machine learning and LLM-based approaches, achieving a AUROC of 0.83.</div></div><div><h3>Conclusion:</h3><div>This work addresses RoB assessment in clinical trials by introducing RoBIn, two Transformer-based models for RoB inference and evidence retrieval, which outperform traditional models and LLMs, demonstrating its potential to improve efficiency and scalability in clinical research evaluation. We also introduce a public dataset that is automatically annotated and can be used to enable future research to enhance automated RoB assessment.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"166 ","pages":"Article 104819"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoBIn: A Transformer-based model for risk of bias inference with machine reading comprehension\",\"authors\":\"Abel Corrêa Dias, Viviane Pereira Moreira, João Luiz Dihl Comba\",\"doi\":\"10.1016/j.jbi.2025.104819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective:</h3><div>Scientific publications are essential for uncovering insights, testing new drugs, and informing healthcare policies. Evaluating the quality of these publications often involves assessing their Risk of Bias (RoB), a task traditionally performed by human reviewers. The goal of this work is to create a dataset and develop models that allow automated RoB assessment in clinical trials.</div></div><div><h3>Methods:</h3><div>We use data from the Cochrane Database of Systematic Reviews (CDSR) as ground truth to label open-access clinical trial publications from PubMed. This process enabled us to develop training and test datasets specifically for machine reading comprehension and RoB inference. Additionally, we created extractive (RoBIn<sup>Ext</sup>) and generative (RoBIn<sup>Gen</sup>) Transformer-based approaches to extract relevant evidence and classify the RoB effectively.</div></div><div><h3>Results:</h3><div>RoBIn was evaluated across various settings and benchmarked against state-of-the-art methods, including large language models (LLMs). In most cases, the best-performing RoBIn variant surpasses traditional machine learning and LLM-based approaches, achieving a AUROC of 0.83.</div></div><div><h3>Conclusion:</h3><div>This work addresses RoB assessment in clinical trials by introducing RoBIn, two Transformer-based models for RoB inference and evidence retrieval, which outperform traditional models and LLMs, demonstrating its potential to improve efficiency and scalability in clinical research evaluation. We also introduce a public dataset that is automatically annotated and can be used to enable future research to enhance automated RoB assessment.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"166 \",\"pages\":\"Article 104819\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000486\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000486","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
RoBIn: A Transformer-based model for risk of bias inference with machine reading comprehension
Objective:
Scientific publications are essential for uncovering insights, testing new drugs, and informing healthcare policies. Evaluating the quality of these publications often involves assessing their Risk of Bias (RoB), a task traditionally performed by human reviewers. The goal of this work is to create a dataset and develop models that allow automated RoB assessment in clinical trials.
Methods:
We use data from the Cochrane Database of Systematic Reviews (CDSR) as ground truth to label open-access clinical trial publications from PubMed. This process enabled us to develop training and test datasets specifically for machine reading comprehension and RoB inference. Additionally, we created extractive (RoBInExt) and generative (RoBInGen) Transformer-based approaches to extract relevant evidence and classify the RoB effectively.
Results:
RoBIn was evaluated across various settings and benchmarked against state-of-the-art methods, including large language models (LLMs). In most cases, the best-performing RoBIn variant surpasses traditional machine learning and LLM-based approaches, achieving a AUROC of 0.83.
Conclusion:
This work addresses RoB assessment in clinical trials by introducing RoBIn, two Transformer-based models for RoB inference and evidence retrieval, which outperform traditional models and LLMs, demonstrating its potential to improve efficiency and scalability in clinical research evaluation. We also introduce a public dataset that is automatically annotated and can be used to enable future research to enhance automated RoB assessment.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.