{"title":"Redesigning CYP109E1 for Improving Catalytic Performance in 25-Hydroxyvitamin D3 Synthesis Through Synergistic Enhancement of Electron Transfer and NADPH Regeneration","authors":"Jiaying Ai, Ziyang Yin, Jikai Gao, Wenjing Wang, Fuping Lu*, Hui-Min Qin* and Shuhong Mao*, ","doi":"10.1021/acssynbio.4c0087910.1021/acssynbio.4c00879","DOIUrl":null,"url":null,"abstract":"<p >P450 enzymes are promising biocatalysts and play an important role in the field of drug synthesis due to their high catalytic activity and stereoselectivity. CYP109E1 from <i>Bacillus megaterium</i> was used to convert VD<sub>3</sub> for the production of 25(OH)VD<sub>3</sub>. However, the industrial production was still limited due to the low catalytic performance of CYP109E1. To overcome this, we constructed an engineered strain containing a modified CYP109E1 coupled with an efficient electron transfer chain and NADPH regeneration system. First, Adx<sub>4–108</sub>T69E-Fpr was identified as the most compatible redox partner for the enzyme based on in-silico analysis. Then, targeted mutations were introduced at the substrate channel of CYP109E1, resulting in higher production efficiency. Next, the production of 25(OH)VD<sub>3</sub> was increased by 13.1% after introducing a double Adx<sub>4–108</sub>T69E expression cassette. Finally, an NADPH regeneration system was introduced by overexpressing <i>zwf</i>, which increased the yield of 25(OH)VD<sub>3</sub> 48.7%. These results demonstrate that recombinant <i>Escherichia coli</i> BL21 (DE3) coexpressing CYP109E1_R70A-ZWF and 2Adx<sub>4–108</sub>T69Es-Fpr is an efficient whole-cell biocatalyst for the synthesis of 25(OH)VD<sub>3</sub>, illustrating an attractive strategy for improving the catalytic efficiency of P450 enzymes.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 4","pages":"1240–1249 1240–1249"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00879","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Redesigning CYP109E1 for Improving Catalytic Performance in 25-Hydroxyvitamin D3 Synthesis Through Synergistic Enhancement of Electron Transfer and NADPH Regeneration
P450 enzymes are promising biocatalysts and play an important role in the field of drug synthesis due to their high catalytic activity and stereoselectivity. CYP109E1 from Bacillus megaterium was used to convert VD3 for the production of 25(OH)VD3. However, the industrial production was still limited due to the low catalytic performance of CYP109E1. To overcome this, we constructed an engineered strain containing a modified CYP109E1 coupled with an efficient electron transfer chain and NADPH regeneration system. First, Adx4–108T69E-Fpr was identified as the most compatible redox partner for the enzyme based on in-silico analysis. Then, targeted mutations were introduced at the substrate channel of CYP109E1, resulting in higher production efficiency. Next, the production of 25(OH)VD3 was increased by 13.1% after introducing a double Adx4–108T69E expression cassette. Finally, an NADPH regeneration system was introduced by overexpressing zwf, which increased the yield of 25(OH)VD3 48.7%. These results demonstrate that recombinant Escherichia coli BL21 (DE3) coexpressing CYP109E1_R70A-ZWF and 2Adx4–108T69Es-Fpr is an efficient whole-cell biocatalyst for the synthesis of 25(OH)VD3, illustrating an attractive strategy for improving the catalytic efficiency of P450 enzymes.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.