{"title":"人人享有人工智能安全","authors":"Bálint Gyevnár, Atoosa Kasirzadeh","doi":"10.1038/s42256-025-01020-y","DOIUrl":null,"url":null,"abstract":"<p>Recent discussions and research in artificial intelligence (AI) safety have increasingly emphasized the deep connection between AI safety and existential risk from advanced AI systems, suggesting that work on AI safety necessarily entails serious consideration of potential existential threats. However, this framing has three potential drawbacks: it may exclude researchers and practitioners who are committed to AI safety but approach the field from different angles; it could lead the public to mistakenly view AI safety as focused solely on existential scenarios rather than addressing a wide spectrum of safety challenges; and it risks creating resistance to safety measures among those who disagree with predictions of existential AI risks. Here, through a systematic literature review of primarily peer-reviewed research, we find a vast array of concrete safety work that addresses immediate and practical concerns with current AI systems. This includes crucial areas such as adversarial robustness and interpretability, highlighting how AI safety research naturally extends existing technological and systems safety concerns and practices. Our findings suggest the need for an epistemically inclusive and pluralistic conception of AI safety that can accommodate the full range of safety considerations, motivations and perspectives that currently shape the field.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"1 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI safety for everyone\",\"authors\":\"Bálint Gyevnár, Atoosa Kasirzadeh\",\"doi\":\"10.1038/s42256-025-01020-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent discussions and research in artificial intelligence (AI) safety have increasingly emphasized the deep connection between AI safety and existential risk from advanced AI systems, suggesting that work on AI safety necessarily entails serious consideration of potential existential threats. However, this framing has three potential drawbacks: it may exclude researchers and practitioners who are committed to AI safety but approach the field from different angles; it could lead the public to mistakenly view AI safety as focused solely on existential scenarios rather than addressing a wide spectrum of safety challenges; and it risks creating resistance to safety measures among those who disagree with predictions of existential AI risks. Here, through a systematic literature review of primarily peer-reviewed research, we find a vast array of concrete safety work that addresses immediate and practical concerns with current AI systems. This includes crucial areas such as adversarial robustness and interpretability, highlighting how AI safety research naturally extends existing technological and systems safety concerns and practices. Our findings suggest the need for an epistemically inclusive and pluralistic conception of AI safety that can accommodate the full range of safety considerations, motivations and perspectives that currently shape the field.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-025-01020-y\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01020-y","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Recent discussions and research in artificial intelligence (AI) safety have increasingly emphasized the deep connection between AI safety and existential risk from advanced AI systems, suggesting that work on AI safety necessarily entails serious consideration of potential existential threats. However, this framing has three potential drawbacks: it may exclude researchers and practitioners who are committed to AI safety but approach the field from different angles; it could lead the public to mistakenly view AI safety as focused solely on existential scenarios rather than addressing a wide spectrum of safety challenges; and it risks creating resistance to safety measures among those who disagree with predictions of existential AI risks. Here, through a systematic literature review of primarily peer-reviewed research, we find a vast array of concrete safety work that addresses immediate and practical concerns with current AI systems. This includes crucial areas such as adversarial robustness and interpretability, highlighting how AI safety research naturally extends existing technological and systems safety concerns and practices. Our findings suggest the need for an epistemically inclusive and pluralistic conception of AI safety that can accommodate the full range of safety considerations, motivations and perspectives that currently shape the field.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.