基于联邦学习的频谱感知防中毒攻击

Małgorzata Wasilewska;Hanna Bogucka
{"title":"基于联邦学习的频谱感知防中毒攻击","authors":"Małgorzata Wasilewska;Hanna Bogucka","doi":"10.1109/JSAC.2025.3560285","DOIUrl":null,"url":null,"abstract":"Federated-Learning (FL) based Spectrum Sensing (SS) method is considered for the application in future cognitive radio communication systems due to its supreme performance in changing radio environments as compared to classic cooperative or non-cooperative SS. It also avoids transferring large training datasets with high-resolution localization data. The FL algorithm is the subject of poisoning attacks that can be random or coordinated. In this paper, we first evaluate the impact of such attacks on the FL-based SS performance. Next, we propose a zero-trust method based on continuous monitoring and classification of the sensors’ models to detect attacked models. These models are then eliminated from the global model construction in FL. Our method is semi-blind, i.e., it does not require an apriori knowledge of who are the genuine actors participating in FL. Simulation results of the system under various attacks (random or coordinated, moderate or very aggressive, deliberately increasing or decreasing the spectrum occupancy) show that our method decreases the SS probability of false alarms by 89 % and increases the SS probability of detection by 16 % in case of the most severe targeted attacks in the most critical SNR ranges.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 6","pages":"2042-2055"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10966417","citationCount":"0","resultStr":"{\"title\":\"Protection Against Poisoning Attacks on Federated Learning-Based Spectrum Sensing $\\\\$ $ \\\\lg $\\\\$ $ }} ?>\",\"authors\":\"Małgorzata Wasilewska;Hanna Bogucka\",\"doi\":\"10.1109/JSAC.2025.3560285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated-Learning (FL) based Spectrum Sensing (SS) method is considered for the application in future cognitive radio communication systems due to its supreme performance in changing radio environments as compared to classic cooperative or non-cooperative SS. It also avoids transferring large training datasets with high-resolution localization data. The FL algorithm is the subject of poisoning attacks that can be random or coordinated. In this paper, we first evaluate the impact of such attacks on the FL-based SS performance. Next, we propose a zero-trust method based on continuous monitoring and classification of the sensors’ models to detect attacked models. These models are then eliminated from the global model construction in FL. Our method is semi-blind, i.e., it does not require an apriori knowledge of who are the genuine actors participating in FL. Simulation results of the system under various attacks (random or coordinated, moderate or very aggressive, deliberately increasing or decreasing the spectrum occupancy) show that our method decreases the SS probability of false alarms by 89 % and increases the SS probability of detection by 16 % in case of the most severe targeted attacks in the most critical SNR ranges.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 6\",\"pages\":\"2042-2055\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10966417\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10966417/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10966417/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于联邦学习(FL)的频谱感知(SS)方法被认为是未来认知无线电通信系统的应用,因为与传统的合作或非合作SS相比,它在不断变化的无线电环境中具有最高的性能。它还避免了传输具有高分辨率定位数据的大型训练数据集。FL算法是中毒攻击的主题,可以是随机的或协调的。在本文中,我们首先评估了此类攻击对基于fl的SS性能的影响。接下来,我们提出了一种基于连续监测和分类传感器模型的零信任方法来检测被攻击的模型。然后从FL的全局模型构建中消除这些模型。我们的方法是半盲的,即它不需要先验地知道谁是参与FL的真正参与者。系统在各种攻击(随机或协调,中等或非常激进)下的仿真结果,故意增加或减少频谱占用)表明,在最关键信噪比范围内最严重的针对性攻击的情况下,我们的方法将假警报的SS概率降低了89%,并将SS检测概率提高了16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protection Against Poisoning Attacks on Federated Learning-Based Spectrum Sensing $\$ $ \lg $\$ $ }} ?>
Federated-Learning (FL) based Spectrum Sensing (SS) method is considered for the application in future cognitive radio communication systems due to its supreme performance in changing radio environments as compared to classic cooperative or non-cooperative SS. It also avoids transferring large training datasets with high-resolution localization data. The FL algorithm is the subject of poisoning attacks that can be random or coordinated. In this paper, we first evaluate the impact of such attacks on the FL-based SS performance. Next, we propose a zero-trust method based on continuous monitoring and classification of the sensors’ models to detect attacked models. These models are then eliminated from the global model construction in FL. Our method is semi-blind, i.e., it does not require an apriori knowledge of who are the genuine actors participating in FL. Simulation results of the system under various attacks (random or coordinated, moderate or very aggressive, deliberately increasing or decreasing the spectrum occupancy) show that our method decreases the SS probability of false alarms by 89 % and increases the SS probability of detection by 16 % in case of the most severe targeted attacks in the most critical SNR ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信