{"title":"为非模式生物和新兴模式生物建立基因组测序和组装系统:简要指南","authors":"Tilman Schell, Carola Greve, Lars Podsiadlowski","doi":"10.1186/s12983-025-00561-7","DOIUrl":null,"url":null,"abstract":"Reference genome assemblies are the basis for comprehensive genomic analyses and comparisons. Due to declining sequencing costs and growing computational power, genome projects are now feasible in smaller labs. De novo genome sequencing for non-model or emerging model organisms requires knowledge about genome size and techniques for extracting high molecular weight DNA. Next to quality, the amount of DNA obtained from single individuals is crucial, especially, when dealing with small organisms. While long-read sequencing technologies are the methods of choice for creating high quality genome assemblies, pure short-read assemblies might bear most of the coding parts of a genome but are usually much more fragmented and do not well resolve repeat elements or structural variants. Several genome initiatives produce more and more non-model organism genomes and provide rules for standards in genome sequencing and assembly. However, sometimes the organism of choice is not part of such an initiative or does not meet its standards. Therefore, if the scientific question can be answered with a genome of low contiguity in intergenic parts, missing the high standards of chromosome scale assembly should not prevent publication. This review describes how to set up an animal genome sequencing project in the lab, how to estimate costs and resources, and how to deal with suboptimal conditions. Thus, we aim to suggest optimal strategies for genome sequencing that fulfil the needs according to specific research questions, e.g. “How are species related to each other based on whole genomes?” (phylogenomics), “How do genomes of populations within a species differ?” (population genomics), “Are differences between populations relevant for conservation?” (conservation genomics), “Which selection pressure is acting on certain genes?” (identification of genes under selection), “Did repeats expand or contract recently?” (repeat dynamics).","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing genome sequencing and assembly for non-model and emerging model organisms: a brief guide\",\"authors\":\"Tilman Schell, Carola Greve, Lars Podsiadlowski\",\"doi\":\"10.1186/s12983-025-00561-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reference genome assemblies are the basis for comprehensive genomic analyses and comparisons. Due to declining sequencing costs and growing computational power, genome projects are now feasible in smaller labs. De novo genome sequencing for non-model or emerging model organisms requires knowledge about genome size and techniques for extracting high molecular weight DNA. Next to quality, the amount of DNA obtained from single individuals is crucial, especially, when dealing with small organisms. While long-read sequencing technologies are the methods of choice for creating high quality genome assemblies, pure short-read assemblies might bear most of the coding parts of a genome but are usually much more fragmented and do not well resolve repeat elements or structural variants. Several genome initiatives produce more and more non-model organism genomes and provide rules for standards in genome sequencing and assembly. However, sometimes the organism of choice is not part of such an initiative or does not meet its standards. Therefore, if the scientific question can be answered with a genome of low contiguity in intergenic parts, missing the high standards of chromosome scale assembly should not prevent publication. This review describes how to set up an animal genome sequencing project in the lab, how to estimate costs and resources, and how to deal with suboptimal conditions. Thus, we aim to suggest optimal strategies for genome sequencing that fulfil the needs according to specific research questions, e.g. “How are species related to each other based on whole genomes?” (phylogenomics), “How do genomes of populations within a species differ?” (population genomics), “Are differences between populations relevant for conservation?” (conservation genomics), “Which selection pressure is acting on certain genes?” (identification of genes under selection), “Did repeats expand or contract recently?” (repeat dynamics).\",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-025-00561-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-025-00561-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Establishing genome sequencing and assembly for non-model and emerging model organisms: a brief guide
Reference genome assemblies are the basis for comprehensive genomic analyses and comparisons. Due to declining sequencing costs and growing computational power, genome projects are now feasible in smaller labs. De novo genome sequencing for non-model or emerging model organisms requires knowledge about genome size and techniques for extracting high molecular weight DNA. Next to quality, the amount of DNA obtained from single individuals is crucial, especially, when dealing with small organisms. While long-read sequencing technologies are the methods of choice for creating high quality genome assemblies, pure short-read assemblies might bear most of the coding parts of a genome but are usually much more fragmented and do not well resolve repeat elements or structural variants. Several genome initiatives produce more and more non-model organism genomes and provide rules for standards in genome sequencing and assembly. However, sometimes the organism of choice is not part of such an initiative or does not meet its standards. Therefore, if the scientific question can be answered with a genome of low contiguity in intergenic parts, missing the high standards of chromosome scale assembly should not prevent publication. This review describes how to set up an animal genome sequencing project in the lab, how to estimate costs and resources, and how to deal with suboptimal conditions. Thus, we aim to suggest optimal strategies for genome sequencing that fulfil the needs according to specific research questions, e.g. “How are species related to each other based on whole genomes?” (phylogenomics), “How do genomes of populations within a species differ?” (population genomics), “Are differences between populations relevant for conservation?” (conservation genomics), “Which selection pressure is acting on certain genes?” (identification of genes under selection), “Did repeats expand or contract recently?” (repeat dynamics).
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.