Nastassia Grimm, Martin Pijnenburg, Giulia Cusin and Camille Bonvin
{"title":"大尺度星系团对Hellings-Downs相关方差的影响:数值结果","authors":"Nastassia Grimm, Martin Pijnenburg, Giulia Cusin and Camille Bonvin","doi":"10.1088/1475-7516/2025/04/047","DOIUrl":null,"url":null,"abstract":"Pulsar timing array experiments have recently found evidence for a stochastic gravitational wave (GW) background, which induces correlations among pulsar timing residuals described by the Hellings and Downs (HD) curve. Standard calculations of the HD correlation and its variance assume an isotropic background. However, for a background of astrophysical origin, we expect a higher GW spectral density in directions with higher galaxy number densities. In a companion paper, we have developed a theoretical formalism to account for the anisotropies arising from large-scale galaxy clustering, leading to a new contribution to the variance of the HD correlation. In this subsequent work, we provide numerical results for this novel effect. We consider a GW background resulting from mergers of supermassive black hole binaries, and relate the merger number density to the overdensity of galaxies. We find that anisotropies due to large-scale galaxy clustering lead to a standard deviation of the HD correlation at most at percent level, remaining well below the standard contributions to the HD variance. Hence, this kind of anisotropies in the GW source distribution does not represent a substantial contamination to the correlations of timing residuals in present and future PTA surveys. Suitable statistical methods to extract the galaxy clustering signal from PTA data will be investigated in the future.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"74 3 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of large-scale galaxy clustering on the variance of the Hellings-Downs correlation: numerical results\",\"authors\":\"Nastassia Grimm, Martin Pijnenburg, Giulia Cusin and Camille Bonvin\",\"doi\":\"10.1088/1475-7516/2025/04/047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsar timing array experiments have recently found evidence for a stochastic gravitational wave (GW) background, which induces correlations among pulsar timing residuals described by the Hellings and Downs (HD) curve. Standard calculations of the HD correlation and its variance assume an isotropic background. However, for a background of astrophysical origin, we expect a higher GW spectral density in directions with higher galaxy number densities. In a companion paper, we have developed a theoretical formalism to account for the anisotropies arising from large-scale galaxy clustering, leading to a new contribution to the variance of the HD correlation. In this subsequent work, we provide numerical results for this novel effect. We consider a GW background resulting from mergers of supermassive black hole binaries, and relate the merger number density to the overdensity of galaxies. We find that anisotropies due to large-scale galaxy clustering lead to a standard deviation of the HD correlation at most at percent level, remaining well below the standard contributions to the HD variance. Hence, this kind of anisotropies in the GW source distribution does not represent a substantial contamination to the correlations of timing residuals in present and future PTA surveys. Suitable statistical methods to extract the galaxy clustering signal from PTA data will be investigated in the future.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"74 3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/04/047\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/047","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The impact of large-scale galaxy clustering on the variance of the Hellings-Downs correlation: numerical results
Pulsar timing array experiments have recently found evidence for a stochastic gravitational wave (GW) background, which induces correlations among pulsar timing residuals described by the Hellings and Downs (HD) curve. Standard calculations of the HD correlation and its variance assume an isotropic background. However, for a background of astrophysical origin, we expect a higher GW spectral density in directions with higher galaxy number densities. In a companion paper, we have developed a theoretical formalism to account for the anisotropies arising from large-scale galaxy clustering, leading to a new contribution to the variance of the HD correlation. In this subsequent work, we provide numerical results for this novel effect. We consider a GW background resulting from mergers of supermassive black hole binaries, and relate the merger number density to the overdensity of galaxies. We find that anisotropies due to large-scale galaxy clustering lead to a standard deviation of the HD correlation at most at percent level, remaining well below the standard contributions to the HD variance. Hence, this kind of anisotropies in the GW source distribution does not represent a substantial contamination to the correlations of timing residuals in present and future PTA surveys. Suitable statistical methods to extract the galaxy clustering signal from PTA data will be investigated in the future.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.