{"title":"Treg细胞通过NLRC3信号通路减弱PH-LHD患者肺静脉重构。","authors":"Gulinigeer Zhakeer,Yanxi Zeng,Guangxi E,Nuerbiyemu Maimaitiaili,Peinan Ju,Hongyun Yao,Yefei Shi,Ming Zhai,Ke Li,Jianhui Zhuang,Yunshan Cao,Qing Yu,Wenhui Peng","doi":"10.1161/circresaha.124.325201","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nPulmonary venous remodeling is a key pathological feature of pulmonary hypertension associated with left heart disease (PH-LHD). This study aims to investigate the role of regulatory T (Treg) cells in this process.\r\n\r\nMETHODS\r\nWe used mouse models with transverse aortic constriction and cell depletion of Foxp3-DTR/tdTomato mice to examine Treg cells' function around pulmonary veins in PH-LHD in vivo. To confirm the effect of Nlrc3-/- Treg cells on PH-LHD, we utilized 3 mouse models: Nlrc3 knockout mice, athymic mice, and endothelial cell lineage tracing Cdh5CreERT2+/--mT/mG+/- mice. The interaction proteins and signaling pathways of Treg cells during endothelial-to-mesenchymal transition were elucidated by protein docking prediction, coimmunoprecipitation and cocultivation of Treg cells with venous endothelial cells.\r\n\r\nRESULTS\r\nTreg cells were abundant around pulmonary veins of transverse aortic constriction-induced PH-LHD and were essential for promoting inflammation resolution and inhibiting pulmonary venous remodeling. Nlrc3 expression was reduced in mice and patients with PH-LHD. NLRC3 (nucleotide-oligomerization domain-like receptor family CARD domain containing 3) deficiency inhibited Treg cell proliferation and impaired their immunosuppressive and endothelial-to-mesenchymal transition-protective effects. Mechanistically, NLRC3 interacted with TRAM (TRIF-related adaptor molecule) and regulated IRF3/NF-κB (nuclear factor-κB) p65 signaling in CD4+ T cells. NLRC3-deficient Treg cells promoted IL (interleukin)-18 expression through IRF3/NF-κB p65 signaling, and thus IL-18 secretion activated endothelial RTK (receptor tyrosine kinase) signaling, favoring endothelial-to-mesenchymal transition progression in pulmonary veins and PH-LHD progress. This process was reversible with IL-18 binding protein in vivo.\r\n\r\nCONCLUSIONS\r\nNLRC3 is crucial for Treg cells to prevent pulmonary venous remodeling in PH-LHD, primarily by modulating IL-18 secretion, which inhibits endothelial-to-mesenchymal transition and thereby improves disease progression and prognosis.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"15 1","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treg Cells Attenuate Pulmonary Venous Remodeling in PH-LHD via NLRC3 Signaling.\",\"authors\":\"Gulinigeer Zhakeer,Yanxi Zeng,Guangxi E,Nuerbiyemu Maimaitiaili,Peinan Ju,Hongyun Yao,Yefei Shi,Ming Zhai,Ke Li,Jianhui Zhuang,Yunshan Cao,Qing Yu,Wenhui Peng\",\"doi\":\"10.1161/circresaha.124.325201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\r\\nPulmonary venous remodeling is a key pathological feature of pulmonary hypertension associated with left heart disease (PH-LHD). This study aims to investigate the role of regulatory T (Treg) cells in this process.\\r\\n\\r\\nMETHODS\\r\\nWe used mouse models with transverse aortic constriction and cell depletion of Foxp3-DTR/tdTomato mice to examine Treg cells' function around pulmonary veins in PH-LHD in vivo. To confirm the effect of Nlrc3-/- Treg cells on PH-LHD, we utilized 3 mouse models: Nlrc3 knockout mice, athymic mice, and endothelial cell lineage tracing Cdh5CreERT2+/--mT/mG+/- mice. The interaction proteins and signaling pathways of Treg cells during endothelial-to-mesenchymal transition were elucidated by protein docking prediction, coimmunoprecipitation and cocultivation of Treg cells with venous endothelial cells.\\r\\n\\r\\nRESULTS\\r\\nTreg cells were abundant around pulmonary veins of transverse aortic constriction-induced PH-LHD and were essential for promoting inflammation resolution and inhibiting pulmonary venous remodeling. Nlrc3 expression was reduced in mice and patients with PH-LHD. NLRC3 (nucleotide-oligomerization domain-like receptor family CARD domain containing 3) deficiency inhibited Treg cell proliferation and impaired their immunosuppressive and endothelial-to-mesenchymal transition-protective effects. Mechanistically, NLRC3 interacted with TRAM (TRIF-related adaptor molecule) and regulated IRF3/NF-κB (nuclear factor-κB) p65 signaling in CD4+ T cells. NLRC3-deficient Treg cells promoted IL (interleukin)-18 expression through IRF3/NF-κB p65 signaling, and thus IL-18 secretion activated endothelial RTK (receptor tyrosine kinase) signaling, favoring endothelial-to-mesenchymal transition progression in pulmonary veins and PH-LHD progress. This process was reversible with IL-18 binding protein in vivo.\\r\\n\\r\\nCONCLUSIONS\\r\\nNLRC3 is crucial for Treg cells to prevent pulmonary venous remodeling in PH-LHD, primarily by modulating IL-18 secretion, which inhibits endothelial-to-mesenchymal transition and thereby improves disease progression and prognosis.\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/circresaha.124.325201\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.124.325201","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Treg Cells Attenuate Pulmonary Venous Remodeling in PH-LHD via NLRC3 Signaling.
BACKGROUND
Pulmonary venous remodeling is a key pathological feature of pulmonary hypertension associated with left heart disease (PH-LHD). This study aims to investigate the role of regulatory T (Treg) cells in this process.
METHODS
We used mouse models with transverse aortic constriction and cell depletion of Foxp3-DTR/tdTomato mice to examine Treg cells' function around pulmonary veins in PH-LHD in vivo. To confirm the effect of Nlrc3-/- Treg cells on PH-LHD, we utilized 3 mouse models: Nlrc3 knockout mice, athymic mice, and endothelial cell lineage tracing Cdh5CreERT2+/--mT/mG+/- mice. The interaction proteins and signaling pathways of Treg cells during endothelial-to-mesenchymal transition were elucidated by protein docking prediction, coimmunoprecipitation and cocultivation of Treg cells with venous endothelial cells.
RESULTS
Treg cells were abundant around pulmonary veins of transverse aortic constriction-induced PH-LHD and were essential for promoting inflammation resolution and inhibiting pulmonary venous remodeling. Nlrc3 expression was reduced in mice and patients with PH-LHD. NLRC3 (nucleotide-oligomerization domain-like receptor family CARD domain containing 3) deficiency inhibited Treg cell proliferation and impaired their immunosuppressive and endothelial-to-mesenchymal transition-protective effects. Mechanistically, NLRC3 interacted with TRAM (TRIF-related adaptor molecule) and regulated IRF3/NF-κB (nuclear factor-κB) p65 signaling in CD4+ T cells. NLRC3-deficient Treg cells promoted IL (interleukin)-18 expression through IRF3/NF-κB p65 signaling, and thus IL-18 secretion activated endothelial RTK (receptor tyrosine kinase) signaling, favoring endothelial-to-mesenchymal transition progression in pulmonary veins and PH-LHD progress. This process was reversible with IL-18 binding protein in vivo.
CONCLUSIONS
NLRC3 is crucial for Treg cells to prevent pulmonary venous remodeling in PH-LHD, primarily by modulating IL-18 secretion, which inhibits endothelial-to-mesenchymal transition and thereby improves disease progression and prognosis.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.