轴子错位与内存负载PBH

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Disha Bandyopadhyay, Debasish Borah and Nayan Das
{"title":"轴子错位与内存负载PBH","authors":"Disha Bandyopadhyay, Debasish Borah and Nayan Das","doi":"10.1088/1475-7516/2025/04/039","DOIUrl":null,"url":null,"abstract":"We study the possibility of producing axion dark matter (DM) via misalignment mechanisms in a non-standard cosmological era dominated by ultra-light primordial black holes (PBH). While the effect of PBH domination on the production of axion via vacuum misalignment is known assuming the PBH evaporation to proceed according to Hawking's semi-classical (SC) approximation, we go beyond these simplest possibilities to include kinetic misalignment of axion and backreaction effect of emitted particles on the PBH themselves, referred to as the memory-burden (MB) effect. We show that, depending upon the type of misalignment mechanism and PBH evaporation regime, the axion as well as PBH parameter space consistent with the observed DM relic changes significantly having interesting implications for axion detection experiments. PBH also offer complementary detection prospects via gravitational wave due to PBH density fluctuations and excess radiation due to emission of hot axions within reach of future cosmic microwave background experiments.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"20 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axion misalignment with memory-burdened PBH\",\"authors\":\"Disha Bandyopadhyay, Debasish Borah and Nayan Das\",\"doi\":\"10.1088/1475-7516/2025/04/039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the possibility of producing axion dark matter (DM) via misalignment mechanisms in a non-standard cosmological era dominated by ultra-light primordial black holes (PBH). While the effect of PBH domination on the production of axion via vacuum misalignment is known assuming the PBH evaporation to proceed according to Hawking's semi-classical (SC) approximation, we go beyond these simplest possibilities to include kinetic misalignment of axion and backreaction effect of emitted particles on the PBH themselves, referred to as the memory-burden (MB) effect. We show that, depending upon the type of misalignment mechanism and PBH evaporation regime, the axion as well as PBH parameter space consistent with the observed DM relic changes significantly having interesting implications for axion detection experiments. PBH also offer complementary detection prospects via gravitational wave due to PBH density fluctuations and excess radiation due to emission of hot axions within reach of future cosmic microwave background experiments.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/04/039\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/039","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在超轻原始黑洞(PBH)主导的非标准宇宙学时代,通过失调机制产生轴子暗物质(DM)的可能性。假设PBH蒸发按照霍金的半经典(SC)近似进行,PBH支配对通过真空错位产生轴子的影响是已知的,我们超越了这些最简单的可能性,包括轴子的动力学错位和发射粒子对PBH本身的反反应效应,称为记忆负荷(MB)效应。我们发现,根据不同类型的失调机制和PBH蒸发机制,与观测到的DM遗迹一致的轴子以及PBH参数空间会发生显著变化,这对轴子探测实验具有有趣的意义。由于PBH密度波动和未来宇宙微波背景实验范围内热轴子发射的过量辐射,PBH还提供了通过引力波进行补充探测的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axion misalignment with memory-burdened PBH
We study the possibility of producing axion dark matter (DM) via misalignment mechanisms in a non-standard cosmological era dominated by ultra-light primordial black holes (PBH). While the effect of PBH domination on the production of axion via vacuum misalignment is known assuming the PBH evaporation to proceed according to Hawking's semi-classical (SC) approximation, we go beyond these simplest possibilities to include kinetic misalignment of axion and backreaction effect of emitted particles on the PBH themselves, referred to as the memory-burden (MB) effect. We show that, depending upon the type of misalignment mechanism and PBH evaporation regime, the axion as well as PBH parameter space consistent with the observed DM relic changes significantly having interesting implications for axion detection experiments. PBH also offer complementary detection prospects via gravitational wave due to PBH density fluctuations and excess radiation due to emission of hot axions within reach of future cosmic microwave background experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信