{"title":"Itô, Stratonovich,以及随机膨胀中的放大方案","authors":"Eemeli Tomberg","doi":"10.1088/1475-7516/2025/04/035","DOIUrl":null,"url":null,"abstract":"The Itô and Stratonovich approaches are two ways to integrate stochastic differential equations. Detailed knowledge of the origin of the stochastic noise is needed to determine which approach suits a particular problem. I discuss this topic pedagogically in stochastic inflation, where the noise arises from a changing comoving coarse-graining scale or, equivalently, from `zooming in' into inflating space. I introduce a zoom-in scheme where deterministic evolution alternates with instantaneous zoom-in steps. I show that this alternating zoom-in scheme is equivalent to the Itô approach in the Markovian limit, while the Stratonovich approach doesn't have a similar interpretation. In the full non-Markovian setup, the difference vanishes. The framework of zoom-in schemes clarifies the relationship between computations in stochastic inflation, linear perturbation theory, and the classical ΔN formalism. It informs the numerical implementation of stochastic inflation and is a building block for a first-principles derivation of the stochastic equations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"74 3 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Itô, Stratonovich, and zoom-in schemes in stochastic inflation\",\"authors\":\"Eemeli Tomberg\",\"doi\":\"10.1088/1475-7516/2025/04/035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Itô and Stratonovich approaches are two ways to integrate stochastic differential equations. Detailed knowledge of the origin of the stochastic noise is needed to determine which approach suits a particular problem. I discuss this topic pedagogically in stochastic inflation, where the noise arises from a changing comoving coarse-graining scale or, equivalently, from `zooming in' into inflating space. I introduce a zoom-in scheme where deterministic evolution alternates with instantaneous zoom-in steps. I show that this alternating zoom-in scheme is equivalent to the Itô approach in the Markovian limit, while the Stratonovich approach doesn't have a similar interpretation. In the full non-Markovian setup, the difference vanishes. The framework of zoom-in schemes clarifies the relationship between computations in stochastic inflation, linear perturbation theory, and the classical ΔN formalism. It informs the numerical implementation of stochastic inflation and is a building block for a first-principles derivation of the stochastic equations.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"74 3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/04/035\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/035","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Itô, Stratonovich, and zoom-in schemes in stochastic inflation
The Itô and Stratonovich approaches are two ways to integrate stochastic differential equations. Detailed knowledge of the origin of the stochastic noise is needed to determine which approach suits a particular problem. I discuss this topic pedagogically in stochastic inflation, where the noise arises from a changing comoving coarse-graining scale or, equivalently, from `zooming in' into inflating space. I introduce a zoom-in scheme where deterministic evolution alternates with instantaneous zoom-in steps. I show that this alternating zoom-in scheme is equivalent to the Itô approach in the Markovian limit, while the Stratonovich approach doesn't have a similar interpretation. In the full non-Markovian setup, the difference vanishes. The framework of zoom-in schemes clarifies the relationship between computations in stochastic inflation, linear perturbation theory, and the classical ΔN formalism. It informs the numerical implementation of stochastic inflation and is a building block for a first-principles derivation of the stochastic equations.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.