Tiffany A. Brisco, Simon De Kreijger, Vaishnavi N. Nair, Ludovic Troian-Gautier, Uttam K. Tambar
{"title":"非对映选择性环化法光催化合成取代2-芳基Morpholines","authors":"Tiffany A. Brisco, Simon De Kreijger, Vaishnavi N. Nair, Ludovic Troian-Gautier, Uttam K. Tambar","doi":"10.1021/jacs.5c01832","DOIUrl":null,"url":null,"abstract":"Morpholines are prevalent in medicinal chemistry due to their favorable pharmacokinetic properties and widespread presence in FDA-approved drugs. Existing methods for morpholine synthesis often require prefunctionalized or protected reagents, limiting their versatility and efficiency. Here, we present a photocatalytic, diastereoselective annulation strategy for the synthesis of morpholines directly from readily available starting materials. This method employs a visible-light-activated photocatalyst, Lewis acid, and Brønsted acid to achieve high yields and stereoselectivity. It also provides access to diverse substitution patterns, including challenging tri- and tetra-substituted morpholines. Mechanistic studies reveal that the reaction proceeds through the formation of a radical cation intermediate, with triflic acid playing critical roles in protonating the substrate, preserving the photocatalyst, and preventing product oxidation. Beyond morpholines, this strategy is extended to piperidines, pyrrolidines, and other privileged nitrogen heterocycles. Our findings provide a modular approach for constructing complex, medicinally valuable scaffolds, advancing both synthetic and medicinal chemistry.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"122 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Synthesis of Substituted 2-Aryl Morpholines via Diastereoselective Annulation\",\"authors\":\"Tiffany A. Brisco, Simon De Kreijger, Vaishnavi N. Nair, Ludovic Troian-Gautier, Uttam K. Tambar\",\"doi\":\"10.1021/jacs.5c01832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morpholines are prevalent in medicinal chemistry due to their favorable pharmacokinetic properties and widespread presence in FDA-approved drugs. Existing methods for morpholine synthesis often require prefunctionalized or protected reagents, limiting their versatility and efficiency. Here, we present a photocatalytic, diastereoselective annulation strategy for the synthesis of morpholines directly from readily available starting materials. This method employs a visible-light-activated photocatalyst, Lewis acid, and Brønsted acid to achieve high yields and stereoselectivity. It also provides access to diverse substitution patterns, including challenging tri- and tetra-substituted morpholines. Mechanistic studies reveal that the reaction proceeds through the formation of a radical cation intermediate, with triflic acid playing critical roles in protonating the substrate, preserving the photocatalyst, and preventing product oxidation. Beyond morpholines, this strategy is extended to piperidines, pyrrolidines, and other privileged nitrogen heterocycles. Our findings provide a modular approach for constructing complex, medicinally valuable scaffolds, advancing both synthetic and medicinal chemistry.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c01832\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01832","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photocatalytic Synthesis of Substituted 2-Aryl Morpholines via Diastereoselective Annulation
Morpholines are prevalent in medicinal chemistry due to their favorable pharmacokinetic properties and widespread presence in FDA-approved drugs. Existing methods for morpholine synthesis often require prefunctionalized or protected reagents, limiting their versatility and efficiency. Here, we present a photocatalytic, diastereoselective annulation strategy for the synthesis of morpholines directly from readily available starting materials. This method employs a visible-light-activated photocatalyst, Lewis acid, and Brønsted acid to achieve high yields and stereoselectivity. It also provides access to diverse substitution patterns, including challenging tri- and tetra-substituted morpholines. Mechanistic studies reveal that the reaction proceeds through the formation of a radical cation intermediate, with triflic acid playing critical roles in protonating the substrate, preserving the photocatalyst, and preventing product oxidation. Beyond morpholines, this strategy is extended to piperidines, pyrrolidines, and other privileged nitrogen heterocycles. Our findings provide a modular approach for constructing complex, medicinally valuable scaffolds, advancing both synthetic and medicinal chemistry.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.