Jihong Ouyang, Zhengjie Zhang, Qingyi Meng, Jinjin Chi
{"title":"无源主动域自适应中基于结构的不确定性估计","authors":"Jihong Ouyang, Zhengjie Zhang, Qingyi Meng, Jinjin Chi","doi":"10.1049/cvi2.70020","DOIUrl":null,"url":null,"abstract":"<p>Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods often struggle in real-world scenarios where, due to data privacy concerns, only a pre-trained source model is available, rather than the source samples. To address this issue, we propose a novel method called the structure-based uncertainty estimation model (SUEM) for source-free active domain adaptation (SFADA). To be specific, we introduce an innovative active sample selection strategy that combines both uncertainty and diversity sampling to identify the most informative samples. We assess the uncertainty in target samples using structure-wise probabilities and implement a diversity selection method to minimise redundancy. For the selected samples, we not only apply standard-supervised loss but also conduct interpolation consistency training to further explore the structural information of the target domain. Extensive experiments across four widely used datasets demonstrate that our method is comparable to or outperforms current UDA and active DA methods.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70020","citationCount":"0","resultStr":"{\"title\":\"Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation\",\"authors\":\"Jihong Ouyang, Zhengjie Zhang, Qingyi Meng, Jinjin Chi\",\"doi\":\"10.1049/cvi2.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods often struggle in real-world scenarios where, due to data privacy concerns, only a pre-trained source model is available, rather than the source samples. To address this issue, we propose a novel method called the structure-based uncertainty estimation model (SUEM) for source-free active domain adaptation (SFADA). To be specific, we introduce an innovative active sample selection strategy that combines both uncertainty and diversity sampling to identify the most informative samples. We assess the uncertainty in target samples using structure-wise probabilities and implement a diversity selection method to minimise redundancy. For the selected samples, we not only apply standard-supervised loss but also conduct interpolation consistency training to further explore the structural information of the target domain. Extensive experiments across four widely used datasets demonstrate that our method is comparable to or outperforms current UDA and active DA methods.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
主动域自适应(Active domain adaptation, Active DA)是一种有效的解决方案,它可以选择性地标记有限数量的目标样本,从而显著提高自适应性能。然而,现有的主动数据分析方法在现实场景中经常遇到困难,由于数据隐私问题,只有预训练的源模型可用,而不是源样本。为了解决这一问题,我们提出了一种基于结构的不确定性估计模型(SUEM),用于无源主动域自适应(SFADA)。具体来说,我们引入了一种创新的主动样本选择策略,该策略结合了不确定性和多样性采样来识别最具信息量的样本。我们使用结构概率评估目标样本的不确定性,并实现多样性选择方法以最小化冗余。对于选择的样本,我们不仅应用标准监督损失,还进行插值一致性训练,进一步挖掘目标域的结构信息。在四个广泛使用的数据集上进行的大量实验表明,我们的方法与当前的UDA和主动DA方法相当或优于后者。
Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation
Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods often struggle in real-world scenarios where, due to data privacy concerns, only a pre-trained source model is available, rather than the source samples. To address this issue, we propose a novel method called the structure-based uncertainty estimation model (SUEM) for source-free active domain adaptation (SFADA). To be specific, we introduce an innovative active sample selection strategy that combines both uncertainty and diversity sampling to identify the most informative samples. We assess the uncertainty in target samples using structure-wise probabilities and implement a diversity selection method to minimise redundancy. For the selected samples, we not only apply standard-supervised loss but also conduct interpolation consistency training to further explore the structural information of the target domain. Extensive experiments across four widely used datasets demonstrate that our method is comparable to or outperforms current UDA and active DA methods.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf