无源主动域自适应中基于结构的不确定性估计

IF 1.3 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jihong Ouyang, Zhengjie Zhang, Qingyi Meng, Jinjin Chi
{"title":"无源主动域自适应中基于结构的不确定性估计","authors":"Jihong Ouyang,&nbsp;Zhengjie Zhang,&nbsp;Qingyi Meng,&nbsp;Jinjin Chi","doi":"10.1049/cvi2.70020","DOIUrl":null,"url":null,"abstract":"<p>Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods often struggle in real-world scenarios where, due to data privacy concerns, only a pre-trained source model is available, rather than the source samples. To address this issue, we propose a novel method called the structure-based uncertainty estimation model (SUEM) for source-free active domain adaptation (SFADA). To be specific, we introduce an innovative active sample selection strategy that combines both uncertainty and diversity sampling to identify the most informative samples. We assess the uncertainty in target samples using structure-wise probabilities and implement a diversity selection method to minimise redundancy. For the selected samples, we not only apply standard-supervised loss but also conduct interpolation consistency training to further explore the structural information of the target domain. Extensive experiments across four widely used datasets demonstrate that our method is comparable to or outperforms current UDA and active DA methods.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70020","citationCount":"0","resultStr":"{\"title\":\"Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation\",\"authors\":\"Jihong Ouyang,&nbsp;Zhengjie Zhang,&nbsp;Qingyi Meng,&nbsp;Jinjin Chi\",\"doi\":\"10.1049/cvi2.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods often struggle in real-world scenarios where, due to data privacy concerns, only a pre-trained source model is available, rather than the source samples. To address this issue, we propose a novel method called the structure-based uncertainty estimation model (SUEM) for source-free active domain adaptation (SFADA). To be specific, we introduce an innovative active sample selection strategy that combines both uncertainty and diversity sampling to identify the most informative samples. We assess the uncertainty in target samples using structure-wise probabilities and implement a diversity selection method to minimise redundancy. For the selected samples, we not only apply standard-supervised loss but also conduct interpolation consistency training to further explore the structural information of the target domain. Extensive experiments across four widely used datasets demonstrate that our method is comparable to or outperforms current UDA and active DA methods.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

主动域自适应(Active domain adaptation, Active DA)是一种有效的解决方案,它可以选择性地标记有限数量的目标样本,从而显著提高自适应性能。然而,现有的主动数据分析方法在现实场景中经常遇到困难,由于数据隐私问题,只有预训练的源模型可用,而不是源样本。为了解决这一问题,我们提出了一种基于结构的不确定性估计模型(SUEM),用于无源主动域自适应(SFADA)。具体来说,我们引入了一种创新的主动样本选择策略,该策略结合了不确定性和多样性采样来识别最具信息量的样本。我们使用结构概率评估目标样本的不确定性,并实现多样性选择方法以最小化冗余。对于选择的样本,我们不仅应用标准监督损失,还进行插值一致性训练,进一步挖掘目标域的结构信息。在四个广泛使用的数据集上进行的大量实验表明,我们的方法与当前的UDA和主动DA方法相当或优于后者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation

Structure-Based Uncertainty Estimation for Source-Free Active Domain Adaptation

Active domain adaptation (active DA) provides an effective solution by selectively labelling a limited number of target samples to significantly enhance adaptation performance. However, existing active DA methods often struggle in real-world scenarios where, due to data privacy concerns, only a pre-trained source model is available, rather than the source samples. To address this issue, we propose a novel method called the structure-based uncertainty estimation model (SUEM) for source-free active domain adaptation (SFADA). To be specific, we introduce an innovative active sample selection strategy that combines both uncertainty and diversity sampling to identify the most informative samples. We assess the uncertainty in target samples using structure-wise probabilities and implement a diversity selection method to minimise redundancy. For the selected samples, we not only apply standard-supervised loss but also conduct interpolation consistency training to further explore the structural information of the target domain. Extensive experiments across four widely used datasets demonstrate that our method is comparable to or outperforms current UDA and active DA methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信