{"title":"乙腈对铜电化学成核和生长的影响:eCO2RR 催化活性的初步测试","authors":"Akbayan Bekey, Florence Vacandio, Khaisa Avchukir","doi":"10.1007/s12678-025-00940-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the nucleation and growth mechanisms of copper on a glassy carbon (GC) electrode from mixed acetonitrile–water (AN/H<sub>2</sub>O) solutions were investigated using cyclic voltammetry (CV), chronoamperometry (CA) and scanning electron microscopy (SEM). The mechanism of copper nucleation in the AN and 70:30 AN/H<sub>2</sub>O solutions is progressive, whereas for the 50:50, 60:40 and 80:20 AN/H<sub>2</sub>O solutions, it is close to the mixed mechanism. The nucleation parameters, including the nucleation rate, nucleation density and average radius of active nuclei centres, were calculated using a three-dimensional electrochemical nucleation model developed by Scharifker-Hills, in accordance with the identified mechanism. The experimental results demonstrated that the average radius of electrodeposited particles could be reduced from 10.8 to 3.2 µm by shifting the applied potential to the negative region, from −0.43 to −0.48 V in a solution of 0.01 M CuCl<sub>2</sub> + 0.5 NaClO<sub>4</sub> + 70:30 AN/H<sub>2</sub>O. SEM images of the obtained coatings demonstrated the formation of uniformly distributed “monanthes-like” structures of copper particles. The catalytic activity of the Cu electrocatalysts were determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods in a 0.5 M NaHCO<sub>3</sub> solution saturated with CO<sub>2</sub> under bulk electrolysis conditions. LSV shows that the Cu catalyst electrodeposited from 50:50 AN/H<sub>2</sub>O mixture exhibited the best performance for electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) with a Tafel slope of 168 mV dec<sup>−1</sup>, exchange current density of 6.81 <span>\\(\\times\\)</span> 10<sup>−4</sup> A cm<sup>−2</sup> and charge transfer resistance of 9.4 Ω cm<sup>2</sup>. This study may provide an economical approach for developing low-cost and efficient copper-based electrocatalysts for CO<sub>2</sub> electroreduction.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 3","pages":"513 - 525"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Acetonitrile on Cu Electrochemical Nucleation and Growth: Preliminary Test of Catalytic Activity for eCO2RR\",\"authors\":\"Akbayan Bekey, Florence Vacandio, Khaisa Avchukir\",\"doi\":\"10.1007/s12678-025-00940-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the nucleation and growth mechanisms of copper on a glassy carbon (GC) electrode from mixed acetonitrile–water (AN/H<sub>2</sub>O) solutions were investigated using cyclic voltammetry (CV), chronoamperometry (CA) and scanning electron microscopy (SEM). The mechanism of copper nucleation in the AN and 70:30 AN/H<sub>2</sub>O solutions is progressive, whereas for the 50:50, 60:40 and 80:20 AN/H<sub>2</sub>O solutions, it is close to the mixed mechanism. The nucleation parameters, including the nucleation rate, nucleation density and average radius of active nuclei centres, were calculated using a three-dimensional electrochemical nucleation model developed by Scharifker-Hills, in accordance with the identified mechanism. The experimental results demonstrated that the average radius of electrodeposited particles could be reduced from 10.8 to 3.2 µm by shifting the applied potential to the negative region, from −0.43 to −0.48 V in a solution of 0.01 M CuCl<sub>2</sub> + 0.5 NaClO<sub>4</sub> + 70:30 AN/H<sub>2</sub>O. SEM images of the obtained coatings demonstrated the formation of uniformly distributed “monanthes-like” structures of copper particles. The catalytic activity of the Cu electrocatalysts were determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods in a 0.5 M NaHCO<sub>3</sub> solution saturated with CO<sub>2</sub> under bulk electrolysis conditions. LSV shows that the Cu catalyst electrodeposited from 50:50 AN/H<sub>2</sub>O mixture exhibited the best performance for electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) with a Tafel slope of 168 mV dec<sup>−1</sup>, exchange current density of 6.81 <span>\\\\(\\\\times\\\\)</span> 10<sup>−4</sup> A cm<sup>−2</sup> and charge transfer resistance of 9.4 Ω cm<sup>2</sup>. This study may provide an economical approach for developing low-cost and efficient copper-based electrocatalysts for CO<sub>2</sub> electroreduction.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"16 3\",\"pages\":\"513 - 525\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-025-00940-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-025-00940-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of Acetonitrile on Cu Electrochemical Nucleation and Growth: Preliminary Test of Catalytic Activity for eCO2RR
In this study, the nucleation and growth mechanisms of copper on a glassy carbon (GC) electrode from mixed acetonitrile–water (AN/H2O) solutions were investigated using cyclic voltammetry (CV), chronoamperometry (CA) and scanning electron microscopy (SEM). The mechanism of copper nucleation in the AN and 70:30 AN/H2O solutions is progressive, whereas for the 50:50, 60:40 and 80:20 AN/H2O solutions, it is close to the mixed mechanism. The nucleation parameters, including the nucleation rate, nucleation density and average radius of active nuclei centres, were calculated using a three-dimensional electrochemical nucleation model developed by Scharifker-Hills, in accordance with the identified mechanism. The experimental results demonstrated that the average radius of electrodeposited particles could be reduced from 10.8 to 3.2 µm by shifting the applied potential to the negative region, from −0.43 to −0.48 V in a solution of 0.01 M CuCl2 + 0.5 NaClO4 + 70:30 AN/H2O. SEM images of the obtained coatings demonstrated the formation of uniformly distributed “monanthes-like” structures of copper particles. The catalytic activity of the Cu electrocatalysts were determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods in a 0.5 M NaHCO3 solution saturated with CO2 under bulk electrolysis conditions. LSV shows that the Cu catalyst electrodeposited from 50:50 AN/H2O mixture exhibited the best performance for electrochemical CO2 reduction reaction (eCO2RR) with a Tafel slope of 168 mV dec−1, exchange current density of 6.81 \(\times\) 10−4 A cm−2 and charge transfer resistance of 9.4 Ω cm2. This study may provide an economical approach for developing low-cost and efficient copper-based electrocatalysts for CO2 electroreduction.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.