光滑环面变异上等变相干束的导出范畴及Koszul对偶性

IF 0.6 4区 数学 Q3 MATHEMATICS
Valery Lunts
{"title":"光滑环面变异上等变相干束的导出范畴及Koszul对偶性","authors":"Valery Lunts","doi":"10.1134/S1234567825010057","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(X\\)</span> be a smooth toric variety defined by the fan <span>\\(\\Sigma\\)</span>. We consider <span>\\(\\Sigma\\)</span> as a finite set with topology and define a natural sheaf of graded algebras <span>\\(\\mathcal{A}_\\Sigma\\)</span> on <span>\\(\\Sigma\\)</span>. The category of modules over <span>\\(\\mathcal{A}_\\Sigma\\)</span> is studied (together with other related categories). This leads to a certain combinatorial Koszul duality equivalence. </p><p> We describe the equivariant category of coherent sheaves <span>\\(\\mathrm{coh}_{X,T}\\)</span> and a related (slightly bigger) equivariant category <span>\\(\\mathcal{O}_{X,T}\\text{-}\\mathrm{mod}\\)</span> in terms of sheaves of modules over the sheaf of algebras <span>\\(\\mathcal{A}_\\Sigma\\)</span>. Eventually (for a complete <span>\\(X\\)</span>), the combinatorial Koszul duality is interpreted in terms of the Serre functor on <span>\\(D^b(\\mathrm{coh}_{X,T})\\)</span>. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 1","pages":"38 - 64"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derived Category of Equivariant Coherent Sheaves on a Smooth Toric Variety and Koszul Duality\",\"authors\":\"Valery Lunts\",\"doi\":\"10.1134/S1234567825010057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(X\\\\)</span> be a smooth toric variety defined by the fan <span>\\\\(\\\\Sigma\\\\)</span>. We consider <span>\\\\(\\\\Sigma\\\\)</span> as a finite set with topology and define a natural sheaf of graded algebras <span>\\\\(\\\\mathcal{A}_\\\\Sigma\\\\)</span> on <span>\\\\(\\\\Sigma\\\\)</span>. The category of modules over <span>\\\\(\\\\mathcal{A}_\\\\Sigma\\\\)</span> is studied (together with other related categories). This leads to a certain combinatorial Koszul duality equivalence. </p><p> We describe the equivariant category of coherent sheaves <span>\\\\(\\\\mathrm{coh}_{X,T}\\\\)</span> and a related (slightly bigger) equivariant category <span>\\\\(\\\\mathcal{O}_{X,T}\\\\text{-}\\\\mathrm{mod}\\\\)</span> in terms of sheaves of modules over the sheaf of algebras <span>\\\\(\\\\mathcal{A}_\\\\Sigma\\\\)</span>. Eventually (for a complete <span>\\\\(X\\\\)</span>), the combinatorial Koszul duality is interpreted in terms of the Serre functor on <span>\\\\(D^b(\\\\mathrm{coh}_{X,T})\\\\)</span>. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"59 1\",\"pages\":\"38 - 64\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1234567825010057\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825010057","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让\(X\)成为一个由风扇\(\Sigma\)定义的平滑的环形变化。我们考虑\(\Sigma\)是一个具有拓扑的有限集合,并在\(\Sigma\)上定义了一个自然的梯度代数集\(\mathcal{A}_\Sigma\)。研究了\(\mathcal{A}_\Sigma\)上的模块类别(以及其他相关类别)。这导致了一定的组合科祖尔对偶性等价。我们描述了相干束的等变范畴\(\mathrm{coh}_{X,T}\)和一个相关的(稍大的)等变范畴\(\mathcal{O}_{X,T}\text{-}\mathrm{mod}\)在代数束\(\mathcal{A}_\Sigma\)上的模束。最终(对于一个完整的\(X\)),组合Koszul对偶被解释为\(D^b(\mathrm{coh}_{X,T})\)上的Serre函子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derived Category of Equivariant Coherent Sheaves on a Smooth Toric Variety and Koszul Duality

Let \(X\) be a smooth toric variety defined by the fan \(\Sigma\). We consider \(\Sigma\) as a finite set with topology and define a natural sheaf of graded algebras \(\mathcal{A}_\Sigma\) on \(\Sigma\). The category of modules over \(\mathcal{A}_\Sigma\) is studied (together with other related categories). This leads to a certain combinatorial Koszul duality equivalence.

We describe the equivariant category of coherent sheaves \(\mathrm{coh}_{X,T}\) and a related (slightly bigger) equivariant category \(\mathcal{O}_{X,T}\text{-}\mathrm{mod}\) in terms of sheaves of modules over the sheaf of algebras \(\mathcal{A}_\Sigma\). Eventually (for a complete \(X\)), the combinatorial Koszul duality is interpreted in terms of the Serre functor on \(D^b(\mathrm{coh}_{X,T})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信