对偶Banach空间中模可分\(*\) -弱紧凸集的(弱)概周期函数和不动点性质

IF 0.6 4区 数学 Q3 MATHEMATICS
Khadime Salame
{"title":"对偶Banach空间中模可分\\(*\\) -弱紧凸集的(弱)概周期函数和不动点性质","authors":"Khadime Salame","doi":"10.1134/S1234567825010070","DOIUrl":null,"url":null,"abstract":"<p> Given a semitopological semigroup <span>\\(S\\)</span>, let <span>\\(\\operatorname{WAP}(S)\\)</span> and <span>\\(\\operatorname{AP}(S)\\)</span> be the algebras of weakly and strongly almost periodic functions on <span>\\(S\\)</span>, respectively. This paper centers around the study of the fixed point property (<span>\\(\\mathbf{F}_{*,s}\\)</span>): whenever <span>\\(\\pi\\colon S\\times K \\to K\\)</span> is a jointly <span>\\(*\\)</span>-weak continuous nonexpansive action on a non-empty norm separable <span>\\(*\\)</span>-weak compact convex set <span>\\(K\\)</span> in the dual <span>\\(E^*\\)</span> of a Banach space <span>\\(E\\)</span>, then there is a common fixed point for <span>\\(S\\)</span> in <span>\\(K\\)</span>. We are primarily interested in answering the following problems posed by Lau and Zhang. (1) Let <span>\\(S\\)</span> be a discrete semigroup. If the fixed point property (<span>\\(\\mathbf{F}_{*,s}\\)</span>) holds, does <span>\\(\\operatorname{WAP}(S)\\)</span> have a left invariant mean? (2) Is the existence of a left invariant mean on <span>\\(\\operatorname{WAP}(S)\\)</span> a sufficient condition to ensure the fixed point property (<span>\\(\\mathbf{F}_{*,s}\\)</span>)? (3) Do the bicyclic semigroups <span>\\(S_2=\\langle e,a,b,c \\colon ab=ac=e\\rangle\\)</span> and <span>\\(S_3=\\langle e,a,b,c,d \\colon ac=bd=e\\rangle\\)</span> have the fixed point property (<span>\\(\\mathbf{F}_{*,s}\\)</span>)? Among other things, characterization theorems of the amenability property of the algebras <span>\\(\\operatorname{WAP}(S)\\)</span> and <span>\\(\\operatorname{AP}(S)\\)</span> are also given. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 1","pages":"79 - 90"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Weakly) Almost Periodic Functions and Fixed Point Properties on Norm Separable \\\\(*\\\\)-Weak Compact Convex Sets in Dual Banach Spaces\",\"authors\":\"Khadime Salame\",\"doi\":\"10.1134/S1234567825010070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Given a semitopological semigroup <span>\\\\(S\\\\)</span>, let <span>\\\\(\\\\operatorname{WAP}(S)\\\\)</span> and <span>\\\\(\\\\operatorname{AP}(S)\\\\)</span> be the algebras of weakly and strongly almost periodic functions on <span>\\\\(S\\\\)</span>, respectively. This paper centers around the study of the fixed point property (<span>\\\\(\\\\mathbf{F}_{*,s}\\\\)</span>): whenever <span>\\\\(\\\\pi\\\\colon S\\\\times K \\\\to K\\\\)</span> is a jointly <span>\\\\(*\\\\)</span>-weak continuous nonexpansive action on a non-empty norm separable <span>\\\\(*\\\\)</span>-weak compact convex set <span>\\\\(K\\\\)</span> in the dual <span>\\\\(E^*\\\\)</span> of a Banach space <span>\\\\(E\\\\)</span>, then there is a common fixed point for <span>\\\\(S\\\\)</span> in <span>\\\\(K\\\\)</span>. We are primarily interested in answering the following problems posed by Lau and Zhang. (1) Let <span>\\\\(S\\\\)</span> be a discrete semigroup. If the fixed point property (<span>\\\\(\\\\mathbf{F}_{*,s}\\\\)</span>) holds, does <span>\\\\(\\\\operatorname{WAP}(S)\\\\)</span> have a left invariant mean? (2) Is the existence of a left invariant mean on <span>\\\\(\\\\operatorname{WAP}(S)\\\\)</span> a sufficient condition to ensure the fixed point property (<span>\\\\(\\\\mathbf{F}_{*,s}\\\\)</span>)? (3) Do the bicyclic semigroups <span>\\\\(S_2=\\\\langle e,a,b,c \\\\colon ab=ac=e\\\\rangle\\\\)</span> and <span>\\\\(S_3=\\\\langle e,a,b,c,d \\\\colon ac=bd=e\\\\rangle\\\\)</span> have the fixed point property (<span>\\\\(\\\\mathbf{F}_{*,s}\\\\)</span>)? Among other things, characterization theorems of the amenability property of the algebras <span>\\\\(\\\\operatorname{WAP}(S)\\\\)</span> and <span>\\\\(\\\\operatorname{AP}(S)\\\\)</span> are also given. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"59 1\",\"pages\":\"79 - 90\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1234567825010070\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825010070","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个半拓扑半群 \(S\),让 \(\operatorname{WAP}(S)\) 和 \(\operatorname{AP}(S)\) 是上的弱概和强概周期函数的代数 \(S\),分别。本文围绕不动点性质(\(\mathbf{F}_{*,s}\)):无论何时 \(\pi\colon S\times K \to K\) 是共同的吗? \(*\)非空模可分上的弱连续非膨胀作用 \(*\)-弱紧凸集 \(K\) 在对偶中 \(E^*\) 巴拿赫空间的 \(E\),则有一个公共不动点 \(S\) 在 \(K\). 我们主要感兴趣的是回答Lau和Zhang提出的以下问题。(1)让 \(S\) 是一个离散半群。如果不动点属性(\(\mathbf{F}_{*,s}\))成立吗? \(\operatorname{WAP}(S)\) 有左不变均值吗?(2)是否存在上的左不变均值 \(\operatorname{WAP}(S)\) 保证不动点性质的充分条件(\(\mathbf{F}_{*,s}\))? (3)求双环半群 \(S_2=\langle e,a,b,c \colon ab=ac=e\rangle\) 和 \(S_3=\langle e,a,b,c,d \colon ac=bd=e\rangle\) 具有定点特性(\(\mathbf{F}_{*,s}\))? 除其他事项外,代数的可调性的表征定理 \(\operatorname{WAP}(S)\) 和 \(\operatorname{AP}(S)\) 也给出了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(Weakly) Almost Periodic Functions and Fixed Point Properties on Norm Separable \(*\)-Weak Compact Convex Sets in Dual Banach Spaces

Given a semitopological semigroup \(S\), let \(\operatorname{WAP}(S)\) and \(\operatorname{AP}(S)\) be the algebras of weakly and strongly almost periodic functions on \(S\), respectively. This paper centers around the study of the fixed point property (\(\mathbf{F}_{*,s}\)): whenever \(\pi\colon S\times K \to K\) is a jointly \(*\)-weak continuous nonexpansive action on a non-empty norm separable \(*\)-weak compact convex set \(K\) in the dual \(E^*\) of a Banach space \(E\), then there is a common fixed point for \(S\) in \(K\). We are primarily interested in answering the following problems posed by Lau and Zhang. (1) Let \(S\) be a discrete semigroup. If the fixed point property (\(\mathbf{F}_{*,s}\)) holds, does \(\operatorname{WAP}(S)\) have a left invariant mean? (2) Is the existence of a left invariant mean on \(\operatorname{WAP}(S)\) a sufficient condition to ensure the fixed point property (\(\mathbf{F}_{*,s}\))? (3) Do the bicyclic semigroups \(S_2=\langle e,a,b,c \colon ab=ac=e\rangle\) and \(S_3=\langle e,a,b,c,d \colon ac=bd=e\rangle\) have the fixed point property (\(\mathbf{F}_{*,s}\))? Among other things, characterization theorems of the amenability property of the algebras \(\operatorname{WAP}(S)\) and \(\operatorname{AP}(S)\) are also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信