论量子Floquet定理

IF 0.6 4区 数学 Q3 MATHEMATICS
Dmitry Treschev
{"title":"论量子Floquet定理","authors":"Dmitry Treschev","doi":"10.1134/S1234567825010082","DOIUrl":null,"url":null,"abstract":"<p> We consider the Schrödinger equation <span>\\(ih\\partial_t\\psi=H\\psi\\)</span>, <span>\\(\\psi=\\psi(\\cdot,t)\\in L^2(\\mathbb{T})\\)</span>. The operator <span>\\(H=-\\partial^2_x+V(x,t)\\)</span> includes a smooth potential <span>\\(V\\)</span>, which is assumed to be time <span>\\(T\\)</span>-periodic. Let <span>\\(W=W(t)\\)</span> be the fundamental solution of this linear ODE system on <span>\\(L^2(\\mathbb{T})\\)</span>. Then, according to the terminology from Lyapunov–Floquet theory, <span>\\(\\mathcal M=W(T)\\)</span> is the monodromy operator. We prove that <span>\\(\\mathcal M\\)</span> is unitarily conjugated to <span>\\(D+\\mathcal C\\)</span>, where <span>\\(D\\)</span> is diagonal in the standard Fourier basis, while <span>\\(\\mathcal C\\)</span> is a compact operator with an arbitrarily small norm. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 1","pages":"91 - 105"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Quantum Floquet Theorem\",\"authors\":\"Dmitry Treschev\",\"doi\":\"10.1134/S1234567825010082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider the Schrödinger equation <span>\\\\(ih\\\\partial_t\\\\psi=H\\\\psi\\\\)</span>, <span>\\\\(\\\\psi=\\\\psi(\\\\cdot,t)\\\\in L^2(\\\\mathbb{T})\\\\)</span>. The operator <span>\\\\(H=-\\\\partial^2_x+V(x,t)\\\\)</span> includes a smooth potential <span>\\\\(V\\\\)</span>, which is assumed to be time <span>\\\\(T\\\\)</span>-periodic. Let <span>\\\\(W=W(t)\\\\)</span> be the fundamental solution of this linear ODE system on <span>\\\\(L^2(\\\\mathbb{T})\\\\)</span>. Then, according to the terminology from Lyapunov–Floquet theory, <span>\\\\(\\\\mathcal M=W(T)\\\\)</span> is the monodromy operator. We prove that <span>\\\\(\\\\mathcal M\\\\)</span> is unitarily conjugated to <span>\\\\(D+\\\\mathcal C\\\\)</span>, where <span>\\\\(D\\\\)</span> is diagonal in the standard Fourier basis, while <span>\\\\(\\\\mathcal C\\\\)</span> is a compact operator with an arbitrarily small norm. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"59 1\",\"pages\":\"91 - 105\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1234567825010082\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825010082","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑Schrödinger方程\(ih\partial_t\psi=H\psi\)\(\psi=\psi(\cdot,t)\in L^2(\mathbb{T})\)。算子\(H=-\partial^2_x+V(x,t)\)包含一个平滑势\(V\),假定它是时间\(T\)周期的。设\(W=W(t)\)为\(L^2(\mathbb{T})\)上线性ODE系统的基本解。然后,根据Lyapunov-Floquet理论的术语,\(\mathcal M=W(T)\)是单算子。证明了\(\mathcal M\)是酉共轭到\(D+\mathcal C\)的,其中\(D\)在标准傅里叶基中是对角的,而\(\mathcal C\)是具有任意小范数的紧算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Quantum Floquet Theorem

We consider the Schrödinger equation \(ih\partial_t\psi=H\psi\), \(\psi=\psi(\cdot,t)\in L^2(\mathbb{T})\). The operator \(H=-\partial^2_x+V(x,t)\) includes a smooth potential \(V\), which is assumed to be time \(T\)-periodic. Let \(W=W(t)\) be the fundamental solution of this linear ODE system on \(L^2(\mathbb{T})\). Then, according to the terminology from Lyapunov–Floquet theory, \(\mathcal M=W(T)\) is the monodromy operator. We prove that \(\mathcal M\) is unitarily conjugated to \(D+\mathcal C\), where \(D\) is diagonal in the standard Fourier basis, while \(\mathcal C\) is a compact operator with an arbitrarily small norm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信