{"title":"改造电网:人工智能在推进智能、可持续和安全能源系统中的作用","authors":"T. A. Rajaperumal, C. Christopher Columbus","doi":"10.1186/s42162-024-00461-w","DOIUrl":null,"url":null,"abstract":"<div><p>The evolution of the electrical grid from its early centralized structure to today’s advanced “smart grid” reflects significant technological progress. Early grids, designed for simple power delivery from large plants to consumers, faced challenges in efficiency, reliability, and scalability. Over time, the grid has transformed into a decentralized network driven by innovative technologies, particularly artificial intelligence (AI). AI has become instrumental in enhancing efficiency, security, and resilience by enabling real-time data analysis, predictive maintenance, demand-response optimization, and automated fault detection, thereby improving overall operational efficiency. This paper examines the evolution of the electrical grid, tracing its transition from early limitations to the methodologies adopted in present smart grids for addressing those challenges. Current smart grids leverage AI to optimize energy management, predict faults, and seamlessly integrate electric vehicles (EVs), reducing transmission losses and improving performance. However, these advancements are not without limitations. Present grids remain vulnerable to cyberattacks, necessitating the adoption of more robust methodologies and advanced technologies for future grids. Looking forward, emerging technologies such as Digital Twin (DT) models, the Internet of Energy (IoE), and decentralized grid management are set to redefine grid architectures. These advanced technologies enable real-time simulations, adaptive control, and enhanced human–machine collaboration, supporting dynamic energy distribution and proactive risk management. Integrating AI with advanced energy storage, renewable resources, and adaptive access control mechanisms will ensure future grids are resilient, sustainable, and responsive to growing energy demands. This study emphasizes AI’s transformative role in addressing the challenges of the early grid, enhancing the capabilities of the present smart grid, and shaping a secure, efficient, and adaptive next-generation grid aligned with future needs.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00461-w","citationCount":"0","resultStr":"{\"title\":\"Transforming the electrical grid: the role of AI in advancing smart, sustainable, and secure energy systems\",\"authors\":\"T. A. Rajaperumal, C. Christopher Columbus\",\"doi\":\"10.1186/s42162-024-00461-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The evolution of the electrical grid from its early centralized structure to today’s advanced “smart grid” reflects significant technological progress. Early grids, designed for simple power delivery from large plants to consumers, faced challenges in efficiency, reliability, and scalability. Over time, the grid has transformed into a decentralized network driven by innovative technologies, particularly artificial intelligence (AI). AI has become instrumental in enhancing efficiency, security, and resilience by enabling real-time data analysis, predictive maintenance, demand-response optimization, and automated fault detection, thereby improving overall operational efficiency. This paper examines the evolution of the electrical grid, tracing its transition from early limitations to the methodologies adopted in present smart grids for addressing those challenges. Current smart grids leverage AI to optimize energy management, predict faults, and seamlessly integrate electric vehicles (EVs), reducing transmission losses and improving performance. However, these advancements are not without limitations. Present grids remain vulnerable to cyberattacks, necessitating the adoption of more robust methodologies and advanced technologies for future grids. Looking forward, emerging technologies such as Digital Twin (DT) models, the Internet of Energy (IoE), and decentralized grid management are set to redefine grid architectures. These advanced technologies enable real-time simulations, adaptive control, and enhanced human–machine collaboration, supporting dynamic energy distribution and proactive risk management. Integrating AI with advanced energy storage, renewable resources, and adaptive access control mechanisms will ensure future grids are resilient, sustainable, and responsive to growing energy demands. This study emphasizes AI’s transformative role in addressing the challenges of the early grid, enhancing the capabilities of the present smart grid, and shaping a secure, efficient, and adaptive next-generation grid aligned with future needs.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00461-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00461-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00461-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Transforming the electrical grid: the role of AI in advancing smart, sustainable, and secure energy systems
The evolution of the electrical grid from its early centralized structure to today’s advanced “smart grid” reflects significant technological progress. Early grids, designed for simple power delivery from large plants to consumers, faced challenges in efficiency, reliability, and scalability. Over time, the grid has transformed into a decentralized network driven by innovative technologies, particularly artificial intelligence (AI). AI has become instrumental in enhancing efficiency, security, and resilience by enabling real-time data analysis, predictive maintenance, demand-response optimization, and automated fault detection, thereby improving overall operational efficiency. This paper examines the evolution of the electrical grid, tracing its transition from early limitations to the methodologies adopted in present smart grids for addressing those challenges. Current smart grids leverage AI to optimize energy management, predict faults, and seamlessly integrate electric vehicles (EVs), reducing transmission losses and improving performance. However, these advancements are not without limitations. Present grids remain vulnerable to cyberattacks, necessitating the adoption of more robust methodologies and advanced technologies for future grids. Looking forward, emerging technologies such as Digital Twin (DT) models, the Internet of Energy (IoE), and decentralized grid management are set to redefine grid architectures. These advanced technologies enable real-time simulations, adaptive control, and enhanced human–machine collaboration, supporting dynamic energy distribution and proactive risk management. Integrating AI with advanced energy storage, renewable resources, and adaptive access control mechanisms will ensure future grids are resilient, sustainable, and responsive to growing energy demands. This study emphasizes AI’s transformative role in addressing the challenges of the early grid, enhancing the capabilities of the present smart grid, and shaping a secure, efficient, and adaptive next-generation grid aligned with future needs.