基于加权差分可见性图的海面弱目标检测

Yifei Fan;Xinbao Wang;Shichao Chen;Zixun Guo;Jia Su;Mingliang Tao;Ling Wang
{"title":"基于加权差分可见性图的海面弱目标检测","authors":"Yifei Fan;Xinbao Wang;Shichao Chen;Zixun Guo;Jia Su;Mingliang Tao;Ling Wang","doi":"10.1109/LGRS.2025.3555560","DOIUrl":null,"url":null,"abstract":"The detection of small floating targets is a challenging problem for maritime surveillance radar. To achieve effective detection within complex sea clutter background, an innovative graph feature detector is proposed in this letter. First, the received radar sequences are converted into graphs to capture the correlation of signals. Then, three graph features weight peak height (WPH), graph complexity (GC), and graph entropy (GE) of weighted difference visibility graph (WDVG) are proposed. The topological properties of the WDVGs constructed from the phase domain of radar echoes is analyzed, which provides insights into the underlying dynamics structures of the observed phenomena. In the detection part, an improved false alarm rate controllable (FAC) concave detector is designed, which is based on the concave hull-learning algorithm. Experiments results based on the real measured IPIX radar datasets confirm that the proposed method has a better performance compared with the existing feature-based methods, especially under shorter observation time (0.128 s).","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sea-Surface Weak Target Detection Based on Weighted Difference Visibility Graph\",\"authors\":\"Yifei Fan;Xinbao Wang;Shichao Chen;Zixun Guo;Jia Su;Mingliang Tao;Ling Wang\",\"doi\":\"10.1109/LGRS.2025.3555560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of small floating targets is a challenging problem for maritime surveillance radar. To achieve effective detection within complex sea clutter background, an innovative graph feature detector is proposed in this letter. First, the received radar sequences are converted into graphs to capture the correlation of signals. Then, three graph features weight peak height (WPH), graph complexity (GC), and graph entropy (GE) of weighted difference visibility graph (WDVG) are proposed. The topological properties of the WDVGs constructed from the phase domain of radar echoes is analyzed, which provides insights into the underlying dynamics structures of the observed phenomena. In the detection part, an improved false alarm rate controllable (FAC) concave detector is designed, which is based on the concave hull-learning algorithm. Experiments results based on the real measured IPIX radar datasets confirm that the proposed method has a better performance compared with the existing feature-based methods, especially under shorter observation time (0.128 s).\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945434/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945434/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小型浮动目标的探测是海上监视雷达面临的一个难题。为了实现复杂海杂波背景下的有效检测,本文提出了一种创新的图特征检测器。首先,将接收到的雷达序列转换成图形来捕获信号的相关性。然后,提出了加权差可见性图(WDVG)的三个图特征权峰高(WPH)、图复杂度(GC)和图熵(GE)。分析了由雷达回波相域构建的wdvg的拓扑特性,从而深入了解观测到的现象的潜在动力学结构。在检测部分,设计了一种改进的基于凹壳学习算法的虚警率可控(FAC)凹检测器。基于IPIX雷达实测数据集的实验结果表明,与现有的基于特征的方法相比,该方法具有更好的性能,特别是在较短的观测时间(0.128 s)下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sea-Surface Weak Target Detection Based on Weighted Difference Visibility Graph
The detection of small floating targets is a challenging problem for maritime surveillance radar. To achieve effective detection within complex sea clutter background, an innovative graph feature detector is proposed in this letter. First, the received radar sequences are converted into graphs to capture the correlation of signals. Then, three graph features weight peak height (WPH), graph complexity (GC), and graph entropy (GE) of weighted difference visibility graph (WDVG) are proposed. The topological properties of the WDVGs constructed from the phase domain of radar echoes is analyzed, which provides insights into the underlying dynamics structures of the observed phenomena. In the detection part, an improved false alarm rate controllable (FAC) concave detector is designed, which is based on the concave hull-learning algorithm. Experiments results based on the real measured IPIX radar datasets confirm that the proposed method has a better performance compared with the existing feature-based methods, especially under shorter observation time (0.128 s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信